Abstract
Seven phenolic compounds, caffeic acid (1), 4-hydroxybenzoic acid (2), 4-methoxybenzoic acid (3), protocatechuic acid (4), eugenol O-β-D-glucopyranoside (5), 3,6-di-O-feruloylsucrose (6), and 3,5-di-O-caffeoylquinic acid methyl ester (7), were isolated from an EtOAc-soluble partition of the flowers of Erigeron annuus. The structures of 1–7 were determined by spectroscopic data interpretation, particularly 1D and 2D NMR studies, and by comparison of their data with those published in the literature. All the isolates were subjected to in vitro bioassays to evaluate their inhibitory activities against the formation of advanced glycation end products (AGEs) and rat lens aldose reductase (RLAR). Of the compounds, 1, 6, and 7 exhibited potent inhibitory activities against the formation of AGEs. In the RLAR assay, compound 7 showed the most potent inhibitory activity.
Access this article
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.
Similar content being viewed by others
References
Beyer-Mears, A. and Cruz, E., Reversal of diabetic cataract by sorbinil, an aldose reductase inhibitor. Diabetes, 34, 15–21 (1985).
Choudhary, M. I., Begum, A., Abbaskhan, A., and Shafiq-ur-Rehman, Atta-ur-Rahman., Carbohyd. Res., 341, 2398–2405 (2006).
Fuente, J. A. and Manzanaro, S., Aldose reductase inhibitors from natural sources. Nat. Prod. Rep., 20, 243–251 (2003).
Forbes, J. M., Cooper, M. E., Oldfield, M. D., and Thomas, M. C., Role of advanced glycation end products in diabetic nephropathy. J. Am. Soc. Nephrol., 14, S254–S258 (2003).
Hashidoko, Y., Pyromeconic acid and its glucosidic derivatives from leaves of Erigeron annuus and the siderophile activity of pyromeconic acid. Biosci. Biotech. Biochem., 59, 886–890 (1995).
Iijima, T., Yaoita, Y., and Kikuchi, M., Two new cyclopentenone derivatives and a new cyclooctadienone derivative from Erigeron annuus (L.) Pers., Erigeron philadelphicus L., and Erigeron sumatrensis Retz. Chem. Pharm. Bull., 51, 894–896 (2003a).
Iijima, T., Yaoita, Y., and Kikuchi, M., Five new sesquiterpenoids and a new diterpenoid from Erigeron annuus (L.) Pers., Erigeron philadelphicus L., and Erigeron sumatrensis Retz. Chem. Pharm. Bull., 51, 545–549 (2003b).
Jang, D. S., Kim, J. M., Lee, Y. M., Yoo, J. L., Kim, Y. S., Kim, J.-H., and Kim, J. S., Flavonols from Houttuynia cordata with protein glycation and aldose reductase inhibitory activity. Nat. Prod. Sci., 12, 210–213 (2006).
Jang, D. S., Lee, G. Y., Kim, Y. S., Lee, Y. M., Kim, C.-S., Yoo, J. L., and Kim, J. S., Anthraquinones from the seeds of Cassia tora with inhibitory activity on protein glycation and aldose reductase. Biol. Pharm. Bull., 30, 2207–2210 (2007).
Jiangsu College of New Medicine., A Dictionary of the Traditional Chinese Medicines. Peoples’ Hygiene Publisher, Beijing, p 4, (1997).
Jung, U. J., Lee, M.-K., Park, Y. B., Jeon, S.-M., and Choi, M.-S., Antihyperglycemic and antioxidant properties of caffeic acid in db/db mice. J. Pharmacol. Exp. Ther., 318, 476–483 (2006).
Kalousova, M., Zima, T., Tesar, V., Stipek, S., and Sulkova, S., Advanced glycation end products in clinical nephrology. Kidney Blood Press Res., 27, 18–28 (2004).
Kim, H.-Y. and Oh, J. H., Screening of Korean forest plants for rat lens aldose reductase inhibition. Biosci. Biotechnol. Biochem. 63, 184–188 (1999).
Larkins, R. G. and Dunlop, M. E., The link between hyperglycemia and diabetic nephropathy. Diabetologia, 35, 499–504 (1992).
Li, X., Pan, J., and Gao, K., γ-Pyranone derivatives and other constituents from Erigeron annuus. Pharmazie, 61, 474–477 (2006).
Li, X., Yang, M., Han, Y.-F., and Gao, K., New sesquiterpenes from Erigeron annus. Planta Med., 71, 268–272 (2005).
Logendra, S., Ribnicky, D. M., Yang, H., Poulev, A., Ma, J., Kennelly, E. J., and Raskin, I., Bioassay-guided isolation of aldose reductase inhibitors from Artemisia dracunculus. Phytochemistry, 67, 1539–1546 (2006).
Lu, W., Yamaoka, Y., Taniguchi, Y., Kitamura, T., Takaki, K., and Fujiwara, Y., J. Organomet. Chem., 580, 290–294 (1999).
Makita, Z., Radoff, S., Rayfield, E. J., Yang, Z. H., Skolnik, E., Delaney, V., Friedman, E. A., Cerami, A., and Vlassara, H. N., Advanced glycosylation end products in patients with diabetic nephropathy. N. Eng. J. Med., 325, 836–842 (1993).
Matsuda, H., Morikawa, T., Toguchida, I., and Yoshikawa, M., Structural requirements of flavonoids and related compounds for aldose reductase inhibitory activity. Chem. Pharm. Bull. 50, 788–795 (2002).
Oh, H., Lee, S., Lee, H.-S., Lee, D.-H., Lee, S. Y., Chung, H.-T., Kim, T. S., and Kwon, T.-O., Germination inhibitory constituents from Erigeron annuus. Phytochemistry, 61, 175–179 (2002).
Park, W. Y., Lee, S. C., Ahn, B. T., Lee, S. H., Ro, J. S., and Lee, K. S., Phenolic compounds from Acalypha australis L. Kor. J. Pharmacogn., 24, 20–25 (1993).
Peng, L. Y., Mei, S. X., Jiang, B., Zhou, H., and Sun, H. D., Constituents from Lonicera japonica. Fitoterapia, 71, 713–715 (2000).
Pyo, M. K., Koo, Y. K., and Yun-Choi, H. S., Anti-platelet effect of the phenolic constituents isolated from the leaves of Magnolia obovata. Nat. Prod. Sci., 8, 147–151 (2002).
Rahbar, S., Yerneni, K. K., Scott, S., Gonzales, N., and Lalezari, I., Novel inhibitors of advanced glycation endproducts (Part II). Mol. Cell Biol. Res. Commun., 3, 360–366 (2000).
Shimoda, K., Kondo, Y., Nishida, T., Hamada, H., Nakajima, N., and Hamada, H., Biotransformation of thymol, carvacrol, and eugenol by cultured cells of Eucalyptus perriniana. Phytochemistry, 67, 2256–2261 (2006).
Shimomura, H., Sashida, Y., and Mimaki, Y., Bitter phenylpropanoid glycosides from Lilium speciosum var. rubrum. Phytochemistry, 25, 2897–2899 (1986).
Shinohara, R., Mano, T., Nagasaka, A., Sawai, Y., Uchimura, K., Hayashi, R., Hayakawa, N., Nagata, M., Makino, M., Kakizawa, H., Itoh, Y., Nakai, A., and Itoh, M., Effects of thyroid hormone on the sorbitol pathway in streptozotocin-induced diabetic rats. Biochim. Biophys. Acta, 1425, 577–586 (1998).
Vinson, J. A. and Howard III, T. B., Inhibition of protein glycation and advanced glycation end products by ascorbic acid and other vitamins and nutrients. J. Nutr. Biochem., 7, 659–663 (1996).
Yabe-Nishimura, C., Aldose reductase in glucose toxicity: a potential target for the prevention of diabetic complications. Pharmacol. Rev., 50, 21–33 (1998).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Jang, D.S., Yoo, N.H., Lee, Y.M. et al. Constituents of the flowers of Erigeron annuus with inhibitory activity on the formation of advanced glycation end products (AGEs) and aldose reductase. Arch. Pharm. Res. 31, 900–904 (2008). https://doi.org/10.1007/s12272-001-1244-z
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12272-001-1244-z