Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Anti-oxidative and inhibitory activities on nitric oxide (NO) and prostaglandin E2 (COX-2) production of flavonoids from seeds of Prunus tomentosa Thunberg

Abstract

Chemical investigation of the 80% Me2CO extract from the seeds of Prunus tomentosa led to the isolation and identification of six flavonoids: kaempferol (1), kaempferol 3-O-α-L-rhamnopyranoside (2; afzelin), kaempferol 3-O-β-D-(6-acetyl)-glucopyranosyl(1→4)-α-L-rhamnopyranoside (3; multiflorin A), kaempferol 3-O-β-D-glucopyranosyl(1→4)-α-L-rhamnopyranoside (4; multiflorin B), quercetin 3-O-α-L-rhamnopyranoside (5; quercitrin), and quercetin 3-O-β-D-glucopyranosyl (1→4)-α-L-rhamnopyranoside (6; multinoside A). Anti-oxidative and inhibitory activities on nitric oxide (NO) and prostaglandin E2 production in interferon-γ (INF-γ) and lipopolysaccharide (LPS)-activated RAW 264.7 cells in vitro (COX-2) of the isolated compounds were evaluated. Compounds 1, 5, and 6 exhibited potent anti-oxidative activity in the DPPH radical scavenging assay with IC50 values of 57.2, 59.4, and 54.3 μg/mL respectively. The positive control, ascorbic acid, had an IC50 of 55.5 μg/mL. Compounds 1, 5, and 6 also reduced COX-2 levels in a dose dependent manner with IC50 values of 10.2, 8.7, and 9.6 μg/mL respectively, with the positive control, indomethacin, having an IC50 of 5.1 μg/mL. All six compounds inhibited NO production in a dose dependent manner with IC50 values of 35.1, 42.8, 40.0, 44.8, 43.7, and 43.9 μg/mL respectively, while the positive control, L-NMMA, had an IC50 of 42.1 μg/mL.

This is a preview of subscription content, log in to check access.

References

  1. Chung, H. Y., Kim, H. J., Kim, J. W., Jung, K. J., Yoon J. S., Yoo, M. A., Kim, K. W., and Yu, B. P., The inflammatory process in aging, Reviews in Clinical Gerontology, 10, 207–222 (2000).

  2. Harborne, J. B. and Mabry, T. J., The Flavonoids: Advances in Research, Champman and Hall, London and New York, p. 45 (1982).

  3. Hirano, R., Sasamoto, W., Matsumoto, A., Itakura, H., Igarashi, O., and Kondo, K., Antioxidant ability of carious flavonoids against DPPH radicals and LDL oxidation. J. Nutr. Sci. Vitaminol., 47, 357–362 (2001).

  4. Hiroyuki, H., Harumi, I., Yolanda, S., Tetsuya, O., Yumi, K., and Isao, K., Antioxidative constituents in Heterotheca inuloides. Bioor. Med. Chem., 5, 865–871 (1997).

  5. Hwang, H. S., Kim, J. M., Song, Y. A., and Jeon, Y. J., Inhibitory effect of ethanol extract and juice of the Korean Cherry (Prunus tomentosa Thunberg) on tyrosinase activity In vitro. Korean J. Food Sci. Technol., 33, 760–763 (2001).

  6. Hwang, H. S., Kim, J. M., Song, Y. A., and Jeon, Y. J., Flavonoids and antimicrobial activity of the ethanol extract of Korean Cherry (Prunus tomentosa Thunberg). J. Korean Soc. Food Sci. Nutr., 32, 833–839 (2003).

  7. Ivanov, V., Merkenschlager, M., and Ceredig, R., Antioxidant treatment of thymic organ cultures decreases NF-kappa B and TCF 1 (alpha) transcription factor activities and inhibits alpha, beta T cell development. J. immunol., 151, 4694–4704 (1993).

  8. Kim, H. J., Yeom, S. H., Kim, M. K., Shim, J. G., Park, I. N., and Lee, M. W., Nitric oxide and prostagladin E2 synthesis inhibitory activities of diarylheptanoids from the barks of Alnus japonica Steudel. Arch. Pharm. Res., 28, 177–179 (2005).

  9. Lee, J. H., Kwon, Y. S., and Kim, C. M., Flavonoids from the stem of Platycarya strobilacea. Kor. J. Pharmacogn., 29, 353–356 (1998).

  10. Lee, S. J., Bonchogangmok. Inminwisang publisher, China, pp. 1799–1800, (1984).

  11. Manguro, L. O., Uqi, I., Lemmen, P., and Hermann, R., Flavonol glycosides of Warburgia ugandensis leaves. Phytochemistry, 64, 891–896 (2003).

  12. Mosmann, T., Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 65, 55–63 (1983).

  13. Seto, T., Yasuda, I., and Akiyama, K., Purgative activity and principals of the fruits of Rosa multiflora and R. wichuraiana. Chem. Pharm. Bull., 40, 2080–2082 (1992).

  14. Sim, S.Y., Natural food to be drugs. Changjosa, Korea, pp. 220–221, (1983).

  15. Surh, Y. J., Chun, K. S., Cha, H. H., Han, S. S., Keum, Y. S., Park, K. K., and Lee, S. S., Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochmicals: down-regulation of COX-2 and iNOS through suppression of NF kappa B activation. Mutat. Res., 480, 243–268 (2001).

  16. Yamasaki, K., Kasai, R., Masaki, Y., Okihara, M., and Tanaka, O., Application of C-13 NMR to the structural elucidation of acylated plant glycosides. Tetrahedron letters, 18, 1231–1234 (1977).

Download references

Author information

Correspondence to Min Won Lee.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kim, S.K., Kim, H.J., Choi, S.E. et al. Anti-oxidative and inhibitory activities on nitric oxide (NO) and prostaglandin E2 (COX-2) production of flavonoids from seeds of Prunus tomentosa Thunberg. Arch. Pharm. Res. 31, 424 (2008). https://doi.org/10.1007/s12272-001-1174-9

Download citation

Key words

  • Prunus tomentosa
  • Rosaceae
  • Flavonoid
  • Antioxidative activity
  • Nitric oxide
  • Cyclooxygenase-2