Skip to main content
Log in

Plant iCLIP — auf Spurensuche im Transkriptom der Pflanze

  • Anwendungen & Produkte
  • RNA-Bindeproteine
  • Published:
BIOspektrum Aims and scope

Abstract

Ribonucleic acids (RNA) are associated with a multitude of RNA-binding proteins that regulate RNA. To identify in vivo targets of the RNA-binding protein AtGRP7, researchers from the University of Bielefeld have established individual nucleotide resolution crosslinking and immunoprecipitation (iCLIP) in plants. The use of high-affinity Nanobodies, i. e., the GFP-Trap®, enabled the purification of RNA-protein complexes from complex plant cell extracts and their subsequent analysis. They identified 858 AtGRP7 RNA targets and binding sites and showed that AtGRP7 modulates the circadian expression of its targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Reichel M, Liao Y, Rettel M et al. (2016) In Planta Determination of the mRNA-Binding Proteome of Arabidopsis Etiolated Seedlings. Plant Cell 28: 2435–2452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Köster T, Marondedze C, Meyer K, Staiger D (2017) RNA-Binding Proteins Revisited — The Emerging Arabidopsis mRNA Interactome. Trends Plant Sci 22: 512–526

    Article  PubMed  Google Scholar 

  3. Köster T, Meyer K (2018) Plant Ribonomics: Proteins in Search of RNA Partners. Trends Plant Sci 23: 325–365

    Article  Google Scholar 

  4. Lewinski M, Köster T (2018) Systems Approaches to Map In Vivo RNA-Protein Interactions in Arabidopsis thaliana. In: Rajewsky N, Jurga S, Barciszewski J (Hrsg.) Systems Biology. Springer International Publishing, Cham, 77–95

    Chapter  Google Scholar 

  5. König J, Zarnack K, Rot G et al. (2010) iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nat Struct Mol Biol 17: 909–915

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hafner M, Katsantoni M, Köster T et al. (2021) CLIP and complementary methods. Nat Rev Methods Primers 1: 20

    Article  CAS  Google Scholar 

  7. Meyer K, Köster T, Nolte C et al. (2017) Adaptation of iCLIP to plants determines the binding landscape of the clock-regulated RNA-binding protein AtGRP7. Genome Biol 18: 204

    Article  PubMed  PubMed Central  Google Scholar 

  8. Köster T, Reichel M, Staiger D (2020) CLIP and RNA interactome studies to unravel genome-wide RNA-protein interactions in vivo in Arabidopsis thaliana. Methods 178: 63–71

    Article  PubMed  Google Scholar 

  9. Muyldermans S (2013) Nanobodies: Natural Single-Domain Antibodies. Ann Rev Biochem 82: 775–797

    Article  CAS  PubMed  Google Scholar 

  10. Heintzen C, Nater M, Apel K, Staiger D (1997) AtGRP7, a nuclear RNA-binding protein as a component of a circadian-regulated negative feedback loop in Arabidopsis thaliana. Proc Nat Acad Sci 94: 8515–8520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schöning JC, Streitner C, Meyer IM et al. (2008) Reciprocal regulation of glycine-rich RNA-binding proteins via an interlocked feedback loop coupling alternative splicing to nonsense-mediated decay in Arabidopsis. Nucleic Acids Res 36: 6977–6987

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tino Köster or Astrid Sitte.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Köster, T., Sitte, A. Plant iCLIP — auf Spurensuche im Transkriptom der Pflanze. Biospektrum 29, 174–176 (2023). https://doi.org/10.1007/s12268-023-1871-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12268-023-1871-5

Navigation