Mikrobielle Symbiosen und die Evolution neuer Organellen

Abstract

Mitochondria and plastids evolved more than one billion years ago from bacterial endosymbionts. Besides these organelles, there is a large diversity of more recently acquired bacterial endosymbionts that provide their hosts with diverse metabolic functions. We use the protists Paulinella chromatophora and Angomonas deanei as model systems to study the molecular mechanisms underpinning endosymbiotic interactions and the transformation of a bacterial endosymbiont into a genetically integrated organelle.

This is a preview of subscription content, log in to check access.

Literatur

  1. [1]

    McCutcheon JP, Moran NA (2012) Extreme genome reduction in symbiotic bacteria. Nat Rev Microbiol 10:13–26

    Article  CAS  Google Scholar 

  2. [2]

    Delaye L, Valadez Cano C, Pérez Zamorano B (2016) How really ancient is Paulinella chromatophora? PLoS Curr 8, doi: https://doi.org/10.1371/currents.tol.e68a099364bb1a1e129a17b4e06b0c6b

    Google Scholar 

  3. [3]

    Marin B, Nowack ECM, Melkonian M (2005) A plastid in the making: Evidence for a second primary endosymbiosis. Protist 156:425–432

    Article  CAS  PubMed  Google Scholar 

  4. [4]

    Nowack ECM, Melkonian M, Glöckner G (2008) Chromatophore genome sequence of Paulinella sheds light on acquisition of photosynthesis by eukaryotes. Curr Biol 18:410–418

    Article  CAS  PubMed  Google Scholar 

  5. [5]

    Nowack ECM, Vogel H, Groth M et al. (2011) Endosymbiotic gene transfer and transcriptional regulation of transferred genes in Paulinella chromatophora. Mol Biol Evol 28:407–422

    Article  CAS  PubMed  Google Scholar 

  6. [6]

    Nowack ECM, Price DC, Bhattacharya D et al. (2016) Gene transfers from diverse bacteria compensate for reductive genome evolution in the chromatophore of Paulinella chromatophora. Proc Natl Acad Sci USA 113:12214–12219

    Article  CAS  PubMed  Google Scholar 

  7. [7]

    Nowack ECM, Grossman AR (2012) Trafficking of protein into the recently established photosynthetic organelles of Paulinella chromatophora. Proc Natl Acad Sci USA 109:5340–5345

    Article  PubMed  Google Scholar 

  8. [8]

    Singer A, Poschmann G, Mühlich C et al. (2017) Massive protein import into the early evolutionary stage photosynthetic organelle of the amoeba Paulinella chromatophora. Curr Biol 27:2763–2773

    Article  CAS  PubMed  Google Scholar 

  9. [9]

    Nowack ECM (2014) Paulinella chromatophora — rethinking the transition from endosymbiont to organelle. Acta Soc Bot Pol 83:387–397

    Article  CAS  Google Scholar 

  10. [10]

    Morales J, Kokkori S, Weidauer D et al. (2016) Development of a toolbox to dissect host-endosymbiont interactions and protein trafficking in the trypanosomatid Angomonas deanei. BMC Evol Biol 16:247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Eva C. M. Nowack.

Additional information

Linda Oberleitner 2009–2014 Biologiestudium an der Universität Düsseldorf; dort seit 2016 Promotionsstudentin in der Gruppe von Dr. E. Nowack im Rahmen des SFB1208 der DFG.

Georg Ehret 2011–2017 Biologiestudium an der Universität Düsseldorf; dort seit 2017 Promotionsstudent in der Gruppe von Dr. E. Nowack im Rahmen der Manchot Graduiertenschule „Molecules of Infection“.

Eva Nowack 1999–2003 Biologiestudium an der Universität zu Köln; dort 2009 Promotion bei Prof. Dr. M. Melkonian in der International Graduate School for Genetics and Functional Genomics. 2010–2014 Postdoc unter Anleitung von Prof. Dr. A. Grossman, Carnegie Institution for Science, Stanford, Kalifornien, als DFG-Stipendiatin. Seit 2014 Leitung der DFG-finanzierten (NO 1090/1-1) Emmy-Noether-Gruppe „Mikrobielle Symbiose und Organellenevolution„, Universität Düsseldorf.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Oberleitner, L., Ehret, G. & Nowack, E.C.M. Mikrobielle Symbiosen und die Evolution neuer Organellen. Biospektrum 25, 268–270 (2019). https://doi.org/10.1007/s12268-019-1043-9

Download citation