Advertisement

BIOspektrum

, Volume 25, Issue 2, pp 156–158 | Cite as

Computergestütztes Design mikrobieller Zellfabriken

  • Steffen KlamtEmail author
  • Axel von Kamp
  • Björn-Johannes Harder
Open Access
Wissenschaft · Methoden Metabolic Engineering
  • 72 Downloads

Abstract

A key principle for the rational design of cell factories is the stoichiometric coupling of growth and product synthesis. Based on this approach we recently constructed an Escherichia coli strain producing itaconic acid with excellent yields. Furthermore, in a large-scale computational study we demonstrated that coupling of growth and production is, in principle, feasible for almost all metabolites in five major production organisms. These results are of fundamental importance for rational metabolic engineering in biotechnology.

Literatur

  1. [1]
    Nielsen J, Lee SY (2018) Evolution of the metabolic engineering community. Metab Eng 48:A1–A2CrossRefPubMedGoogle Scholar
  2. [2]
    Becker J, Wittmann C (2015) Advanced biotechnology: metabolically engineered cells for the bio-based production of chemicals and fuels, materials, and health-care products. Angew Chem Int Ed 54:3328–3350CrossRefGoogle Scholar
  3. [3]
    Bordbar A, Monk JM, King ZA et al. (2014) Constraintbased models predict metabolic and associated cellular functions. Nat Rev Genet 15:107–120CrossRefPubMedGoogle Scholar
  4. [4]
    von Kamp A, Klamt S (2017) Growth-coupled overproduction is feasible for almost all metabolites in five major production organisms. Nat Commun 8:15956CrossRefGoogle Scholar
  5. [5]
    Portnoy VA, Bezdan D, Zengler K (2011) Adaptive laboratory evolution–harnessing the power of biology for metabolic engineering. Curr Opin Biotechnol 22:590–594CrossRefPubMedGoogle Scholar
  6. [6]
    Harder B-J, Bettenbrock K, Klamt S (2016) Model-based metabolic engineering enables high yield itaconic acid production by Escherichia coli. Metab Eng 38:29–37CrossRefPubMedGoogle Scholar
  7. [7]
    von Kamp A, Thiele S, Hädicke O et al. (2017) Use of CellNetAnalyzer in biotechnology and metabolic engineering. J Biotechnol 261:221–228CrossRefPubMedGoogle Scholar
  8. [8]
    Burg JM, Cooper CB, Ye Z et al. (2016) Large-scale bioprocesses competitiveness: the potential of dynamic metabolic control in two-stage fermentations. Curr Opin Chem Eng 14:121–136CrossRefGoogle Scholar
  9. [9]
    Klamt S, Mahadevan R, Hädicke O (2018) When do twostage processes outperform one-stage processes? Biotechnol J 13:1700539CrossRefGoogle Scholar
  10. [10]
    Harder B-J, Bettenbrock K, Klamt S (2018) Temperaturedependent dynamic control of the TCA cycle increases volumetric productivity of itaconic acid production by Escherichia coli. Biotechnol Bioeng 115:156–164CrossRefPubMedGoogle Scholar

Copyright information

© Die Autoren 2019

Open Access: This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://doi.org/creativecommons.org/licenses/by/4.0/), which permits use, duplication, adaption, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Open access funding provided by Max Planck Society.

Authors and Affiliations

  • Steffen Klamt
    • 1
    • 2
    Email author
  • Axel von Kamp
    • 1
  • Björn-Johannes Harder
    • 1
  1. 1.Analyse und Redesign Biologischer NetzwerkeMax-Planck-Institut für Dynamik Komplexer Technischer SystemeMagdeburgDeutschland
  2. 2.Max-Planck-Institut für Dynamik komplexer technischer SystemeMagdeburgDeutschland

Personalised recommendations