Skip to main content
Log in

Lichtstrukturierte Matrizen für die räumlich-zeitliche Proteinanordnung

  • Wissenschaft
  • Optochemische Biologie und photosensitive 3D-Hydrogele
  • Published:
BIOspektrum Aims and scope

Abstract

In vivo, cells can grow in 3D and significantly differ from cells grown in 2D. Imitating an extracellular microenvironment, 3D cell culture platforms using dynamic hydrogels have emerged, which can be altered by external stimuli, such as light, to mimic the chemical and physical properties of the native cellular environment. Photo-sensitive matrices enable the non-invasive, on-demand assembly of proteins and allow them to take influence on cells in real-time with high accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. LaFratta CN, Fourkas JT, Baldacchini T et al. (2007) Multiphoton fabrication. Angew Chem Int Ed Engl 46:6238–6258

    Article  PubMed  CAS  Google Scholar 

  2. Geiger B, Spatz JP, Bershadsky AD (2009) Environmental sensing through focal adhesions. Nat Rev Mol Cell Biol 10:21–33

    Article  PubMed  CAS  Google Scholar 

  3. Langer R, Tirrell DA (2004) Designing materials for biology and medicine. Nature 428:487–492

    Article  PubMed  CAS  Google Scholar 

  4. Lutolf MP, Hubbell JA (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 23:47–55

    Article  PubMed  CAS  Google Scholar 

  5. Lata S, Reichel A, Brock R et al. (2005) High-affinity adaptors for switchable recognition of histidine-tagged proteins. J Am Chem Soc 127:10205–10215

    Article  PubMed  CAS  Google Scholar 

  6. Grunwald C, Schulze K, Reichel A et al. (2010) In situ assembly of macromolecular complexes triggered by light. Proc Natl Acad Sci USA 107:6146–6151

    Article  PubMed  Google Scholar 

  7. Laboria N, Wieneke R, Tampe R (2013) Control of nanomolar interaction and in situ assembly of proteins in four dimensions by light. Angew Chem Int Ed Engl 52:848–853

    Article  PubMed  CAS  Google Scholar 

  8. Lutolf MP, Gilbert PM, Blau HM (2009) Designing materials to direct stem-cell fate. Nature 462:433–441

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph Wieneke.

Additional information

Ralph Wieneke1999–2005 Chemiestudium an der Universität Marburg, 2009 Promotion in bioorganischer Chemie unter der Leitung von Prof. Dr. A. Geyer. 2009 Gastwissenschaftler an der Universität Göttingen im Labor von Prof. Dr. C. Steinem. 2010–2014 Postdoktorand an der Universität Frankfurt a. M. unter der Leitung von Prof. Dr. R. Tampé. Seit 2014 eigenständige Arbeiten auf dem Gebiet der optochemischen Biologie mit Fokus auf der Entwicklung von molekularen Werkzeugen zur Untersuchung und Manipulation von Membran-assoziierten Prozessen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wieneke, R. Lichtstrukturierte Matrizen für die räumlich-zeitliche Proteinanordnung. Biospektrum 24, 471–474 (2018). https://doi.org/10.1007/s12268-018-0947-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12268-018-0947-0

Navigation