Konformationsbewegungen von aktiven Membrantransportern

Abstract

Mechanistic understanding of biological and biochemical processes requires methods to analyze structures and states but also conformational dynamics of biomacromolecules at room temperature under physiologically relevant conditions. Single-molecule Förster resonance energy transfer (smFRET) has evolved to a versatile tool for exactly this, the observation of intra- and intermolecular conformational dynamics and interactions of biomacromolecules. We here outline the basic principles and illustrate the applications of smFRET for understanding molecular mechanisms of active membrane transporters.

Literatur

  1. [1]

    Kalinin S, Peulen T, Sindbert S et al. (2012) A toolkit and benchmark study for FRET-restrained high-precision structural modeling. Nat Methods 9:1218–1225

    Article  PubMed  CAS  Google Scholar 

  2. [2]

    Hohlbein J, Craggs TD, Cordes T (2014) Alternating-laser excitation: single-molecule FRET and beyond. Chem Soc Rev 43:1156–1171

    Article  PubMed  CAS  Google Scholar 

  3. [3]

    Gouridis G, Schuurman-Wolters GK, Ploetz E et al. (2015) Conformational dynamics in substrate-binding domains influences transport in the ABC importer GlnPQ. Nat Struct Mol Biol 22:57–64

    Article  PubMed  CAS  Google Scholar 

  4. [4]

    Lerner E, Cordes T, Ingargiola A et al. (2018) Toward dynamic structural biology: two decades of single-molecule Förster resonance energy transfer. Science 359:6373

    Article  CAS  Google Scholar 

  5. [5]

    Roy R, Hohng S, Ha T (2008) A practical guide to singlemolecule FRET. Nat Methods 5:507

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. [6]

    Deniz AA, Dahan M, Grunwell JR et al. (1999) Single-pair fluorescence resonance energy transfer on freely diffusing molecules: observation of Förster distance dependence and subpopulations. Proc Natl Acad Sci USA 96:3670–3675

    Article  PubMed  CAS  Google Scholar 

  7. [7]

    Ha T, Enderle T, Ogletree DF et al. (1996) Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor. Proc Natl Acad Sci USA 93:6264–6268

    Article  PubMed  CAS  Google Scholar 

  8. [8]

    Hohng S, Lee S, Lee J et al. (2014) Maximizing information content of single-molecule FRET experiments: multi-color FRET and FRET combined with force or torque. Chem Soc Rev 43:1007–1013

    Article  PubMed  CAS  Google Scholar 

  9. [9]

    Ploetz E, Lerner E, Husada F et al. (2016) Förster resonance energy transfer and protein-induced fluorescence enhancement as synergetic multi-scale molecular rulers. Sci Rep 6:33257

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. [10]

    Craggs TD, Kapanidis AN (2012) Six steps closer to FRET-driven structural biology. Nat Methods 9:1157

    Article  PubMed  CAS  Google Scholar 

  11. [11]

    Husada F, Gouridis G, Vietrov R et al. (2015) Watching conformational dynamics of ABC transporters with singlemolecule tools. Biochem Soc Transactions 43:1041

    Article  CAS  Google Scholar 

  12. [12]

    Locher KP (2016) Mechanistic diversity in ATP-binding cassette (ABC) transporters. Nat Struct Mol Biol 23:487–493

    Article  PubMed  CAS  Google Scholar 

  13. [13]

    Liu Y, Liu Y, He L et al. (2018) Single-molecule fluorescence studies on the conformational change of the ABC transporter MsbA. Biophys Rep 4:153–165

    Article  Google Scholar 

  14. [14]

    Yang M, Levanon NL, Acar B et al. (2018) Single-molecule probing of the conformational homogeneity of the ABC transporter BtuCD. Nat Chem Biol 14:715–722

    Article  PubMed  CAS  Google Scholar 

  15. [15]

    Husada FH, Bountra K, Tassis K et al. (2018) Conformational dynamics of the ABC transporter McjD seen by single-molecule FRET. In Revision.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Thorben Cordes.

Additional information

Rebecca Mächtel Jahrgang 1991. Biologiestudium an der Universität Erlangen-Nürnberg (B. Sc.) und TU München (M. Sc.), mit Aufenthalt an der Fondazione Edmund Mach, San Michele all‘Adige, Italien. Seit 2017 Promotion in Biologie an der LMU München.

Christian Gebhardt Jahrgang 1992. Physik- und Informatikstudium an der LMU München, mit Aufenthalt am Centre de Recherche Paul Pascal, Bordeaux, Frankreich. 2017 wissenschaftlicher Mitarbeiter am Max-Planck-Institut für Quantenoptik, Garching. Seit 2017 Promotion in Biologie an der LMU München.

Thorben Cordes Jahrgang 1980. Chemiestudium an der TU Braunschweig, mit Aufenthalt am University College Cork, Irland. 2008 Promotion in Physik an der LMU München, 2008–2009 Postdoc dort und 2010–2011 an der Universität Oxford, UK. 2011–2016 Assistant Professor, 2016–2017 Associate Professor an der Universität Groningen, Niederlande. Seit 2017 Professor für Physikalische und Synthetische Biologie an der LMU München.

Rights and permissions

Open Access: This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, duplication, adaption, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mächtel, R., Gebhardt, C. & Cordes, T. Konformationsbewegungen von aktiven Membrantransportern. Biospektrum 24, 495–497 (2018). https://doi.org/10.1007/s12268-018-0945-2

Download citation