Skip to main content
Log in

Enzymgesteuerte Indigoproduktion

  • Biotechnologie
  • Published:
BIOspektrum Aims and scope

Abstract

Indole is an important compound in nature and is present in many pathways. First, an overview is given on the oxidative conversions of indole and respective products formed. A focus is put on the formation of pure indigo and some derivatives. Thus, flavin-dependent monooxygenases (styrene epoxidases) were employed which allow the selective oxygenation of indole leading to pure products without the formation of by-pro - ducts as indirubin or isoindigo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Sadauskas M, Vaitekūnas J, Gasparavičiūtė R et al. (2017) Indole biodegradation in Acinetobacter sp. strain O153: genetic and biochemical characterization. Appl Environ Microbiol 83, doi: 10.1128/AEM.01453-17

  2. Dua A, Chauhan K, Pathak H (2014) Biotransformation of indigo pigment by indigenously isolated Pseudomonas sp. HAV-1 and assessment of its antioxidant property. Biotechnol Res Int, doi: 10.1155/2014/109249

    Google Scholar 

  3. Glowacki ED, Voss G, Leonat L et al. (2012) Indigo and tyrian purple–from ancient natural dyes to modern organic semiconductors. Isr J Chem 52:540–551

    Article  CAS  Google Scholar 

  4. He B, Pun AB, Zherebetskyy D et al. (2014) New form of an old natural dye: bay-annulated indigo (BAI) as an excellent electron accepting unit for high performance organic semi - conductors. J Am Chem Soc 136:15093–15101

    Article  PubMed  CAS  Google Scholar 

  5. Heine T, Tucker K, Okonkwo N et al. (2017) Engineering styrene monooxygenase for biocatalysis: reductase-epoxidase fusion proteins. Appl Biochem Biotechnol 181:1590–1610

    Article  PubMed  CAS  Google Scholar 

  6. Riedel A, Heine T, Westphal AH et al. (2015) Catalytic and hydrodynamic properties of styrene monooxygenases from Rhodococcus opacus 1CP are modulated by cofactor binding. AMB Express 5:112

    Article  PubMed  CAS  Google Scholar 

  7. Tischler D, Gröning JAD, Kaschabek SR et al. (2012) Onecomponent styrene monooxygenases: an evolutionary view on a rare class of flavoproteins. Appl Biochem Biotechnol 167:931–944

    Article  PubMed  CAS  Google Scholar 

  8. Li QS, Schwaneberg U, Fischer P et al. (2000) Directed evolution of the fatty-acid hydroxylase P450 BM-3 into an indole-hydroxylating catalyst. Chemistry 6:1531–1536

    Article  PubMed  CAS  Google Scholar 

  9. Paul CE, Tischler D, Riedel A et al. (2015) Nonenzymatic regeneration of styrene monooxygenase for catalysis. ACS Catal 5:2961–2965

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Tischler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heine, T., Großmann, C., Hofmann, S. et al. Enzymgesteuerte Indigoproduktion. Biospektrum 24, 446–448 (2018). https://doi.org/10.1007/s12268-018-0938-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12268-018-0938-1

Navigation