Skip to main content

Knallgasbakterien – neue Synthesewege mit Cupriavidus necator

Abstract

Climate change and the finite nature of fossil fuels raise the need for the fixation of CO2 and conversion into traditionally petroleum-derived chemicals. With Cupriavidus necator as an easily genetically modifiable biocatalyst, a wide range of products, e. g. polymers, platform chemicals, biofuels, and terpenes, can be accessed. The wide range of applications as well as a prominent example of electrochemical α-humulene production from CO2 are promising developments towards a bio-based society.

This is a preview of subscription content, access via your institution.

Literatur

  1. Sydow A, Krieg T, Mayer F et al. (2014) Electroactive bacteria-molecular mechanisms and genetic tools. Appl Microbiol Biotechnol 98:8481–8495

    Article  PubMed  CAS  Google Scholar 

  2. Heinrich D, Raberg M, Steinbüchel A (2017) Studies on the aerobic utilization of synthesis gas (syngas) by wild type and recombinant strains of Ralstonia eutropha H16. Microb Biotechnol, doi: 10.1111/1751-7915.12873

    Google Scholar 

  3. Ishizaki A, Tanaka K, Taga N (2001) Microbial production of poly-D-3-hydroxybutyrate from CO2. Appl Microbiol Biotechnol 57:6

    Article  PubMed  CAS  Google Scholar 

  4. Raberg M, Voigt B, Hecker M et al. (2014) A closer look on the polyhydroxybutyrate-(PHB-) negative phenotype of Ralstonia eutropha PHB-4. PLoS One 9:1–11

    Article  CAS  Google Scholar 

  5. Gruber S, Hagen J, Schwab H et al. (2014) Versatile and stable vectors for efficient gene expression in Ralstonia eutropha H16. J Biotechnol 186:74–82

    Article  PubMed  CAS  Google Scholar 

  6. Sydow A, Pannek A, Krieg T et al. (2017) Expanding the genetic tool box for Cupriavidus necator by a stabilized L-rhamnose inducible plasmid system. J Biotechnol 263:1–10

    Article  PubMed  CAS  Google Scholar 

  7. Tee KL, Grinham J, Othusitse AM et al. (2017) An efficient transformation method for the bioplastic-producing ‘Knallgas’ bacterium Ralstonia eutropha H16. Biotechnol J 12, doi: 10.1002/biot.201700081

  8. Raberg M, Volodina E, Lin K et al. (2017) Ralstonia eutropha H16 in progress: applications beside PHAs and establishment as production platform by advanced genetic tools. Crit Rev Biotechnol 0:1–17

    Google Scholar 

  9. Marc J, Grousseau E, Lombard E et al. (2017) Over-expression of GroESL in Cupriavidus necator for heterotrophic and autotrophic isopropanol production. Metab Eng 42:74–84

    Article  PubMed  CAS  Google Scholar 

  10. Krieg T, Sydow A, Faust S et al. (2018) CO2 to terpenes: autotrophic and electroautotrophic α-humulene production with Cupriavidus necator. Angew Chemie Int Ed 57:1–5

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Holtmann.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Milker, S., Kunze, C., Sydow, A. et al. Knallgasbakterien – neue Synthesewege mit Cupriavidus necator. Biospektrum 24, 324–326 (2018). https://doi.org/10.1007/s12268-018-0920-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12268-018-0920-y