, Volume 24, Issue 3, pp 278–282 | Cite as

Protein-Cross-Linking zur Aufklärung von komplexen Strukturen

  • Olexandr Dybkov
  • Alexandra Stützer
  • Karl Bertram
  • Berthold Kastner
  • Holger Stark
  • Reinhard Lührmann
  • Henning Urlaub
Open Access
Wissenschaft · Special: High Content Imaging Kryo-Elektronenmikroskopie


Cryo-electron microscopy (cryo-EM) can solve structures of highly dynamic macromolecular complexes. To characterize less well defined regions in cryo-EM images, cross-linking coupled with mass spectrometry (CX-MS) provides valuable information on the arrangement of domains and amino acids. CX-MS involves covalent linkage of protein residues close to each other and identifying these connections by mass spectrometry. Here, we summarise the advances of CX-MS and its integration with cryo-EM for structural reconstruction.


  1. [1]
    Cheng Y (2015) Single-particle cryo-EM at crystallographic resolution. Cell 161:450–457CrossRefPubMedPubMedCentralGoogle Scholar
  2. [2]
    Cheng Y, Grigorieff N, Penczek PA et al. (2015) A primer to single-particle cryo-electron microscopy. Cell 161:438–449CrossRefPubMedPubMedCentralGoogle Scholar
  3. [3]
    Nogales E, Scheres SH (2015) Cryo-EM: a unique tool for the visualization of macromolecular complexity. Mol Cell 58:677–689CrossRefPubMedPubMedCentralGoogle Scholar
  4. [4]
    Fernandez-Leiro R, Scheres SH (2016) Unravelling biological macromolecules with cryo-electron microscopy. Nature 537:339–346CrossRefPubMedPubMedCentralGoogle Scholar
  5. [5]
    Schmidt C, Urlaub H (2017) Combining cryo-electron microscopy (cryo-EM) and cross-linking mass spectrometry (CX-MS) for structural elucidation of large protein assemblies. Curr Opin Struct Biol 46:157–168CrossRefPubMedGoogle Scholar
  6. [6]
    Sinz A (2003) Chemical cross-linking and mass spectrometry for mapping three-dimensional structures of proteins and protein complexes. J Mass Spectrom 38:1225–1237CrossRefPubMedGoogle Scholar
  7. [7]
    Rappsilber J (2011) The beginning of a beautiful friendship: cross-linking/mass spectrometry and modelling of proteins and multi-protein complexes. J Struct Biol 173:530–540CrossRefPubMedPubMedCentralGoogle Scholar
  8. [8]
    Leitner A, Faini M, Stengel F et al. (2016) Crosslinking and mass spectrometry: an integrated technology to understand the structure and function of molecular machines. Trends Biochem Sci 41:20–32CrossRefPubMedGoogle Scholar
  9. [9]
    Kao A, Chiu CL, Vellucci D et al. (2011) Development of a novel cross-linking strategy for fast and accurate identification of cross-linked peptides of protein complexes. Mol Cell Proteomics 10, doi: 10.1074/mcp.M110.002212Google Scholar
  10. [10]
    Muller MQ, Dreiocker F, Ihling CH et al. (2010) Cleavable cross-linker for protein structure analysis: reliable identification of cross-linking products by tandem MS. Anal Chem 82:6958–6968CrossRefPubMedGoogle Scholar
  11. [11]
    Liu F, Rijkers DT, Post H et al. (2015) Proteome-wide profiling of protein assemblies by cross-linking mass spectrometry. Nat Methods 12:1179–1184CrossRefPubMedGoogle Scholar
  12. [12]
    Agafonov DE, Kastner B, Dybkov O et al. (2016) Molecular architecture of the human U4/U6.U5 tri-snRNP. Science 351:1416–1420CrossRefPubMedGoogle Scholar
  13. [13]
    Rauhut R, Fabrizio P, Dybkov O et al. (2016) Molecular architecture of the Saccharomyces cerevisiae activated spliceosome. Science 353:1399–1405CrossRefPubMedGoogle Scholar
  14. [14]
    Bertram K, Agafonov DE, Dybkov O et al. (2017) Cryo-EM structure of a pre-catalytic human spliceosome primed for activation. Cell 170:701–713CrossRefPubMedGoogle Scholar
  15. [15]
    Bertram K, Agafonov DE, Liu WT et al. (2017) Cryo-EM structure of a human spliceosome activated for step 2 of splicing. Nature 542:318–323CrossRefPubMedGoogle Scholar
  16. [16]
    Haselbach D, Komarov I, Agafonov DE et al. (2018) Structure and conformational dynamics of the human spliceosomal Bact complex. Cell 172:454–464CrossRefPubMedGoogle Scholar

Copyright information

© Die Autoren 2018

Open Access:

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits use, duplication, adaption, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Open access funding provided by Max Planck Society.

Authors and Affiliations

  • Olexandr Dybkov
    • 1
  • Alexandra Stützer
    • 2
  • Karl Bertram
    • 3
  • Berthold Kastner
    • 1
  • Holger Stark
    • 3
  • Reinhard Lührmann
    • 1
  • Henning Urlaub
    • 2
    • 4
  1. 1.Abteilung Zelluläre BiochemieMax-Planck-Institut für Biophysikalische ChemieGöttingenDeutschland
  2. 2.Bioanalytische MassenspektrometrieMax-Planck-Institut für biophysikalische ChemieGöttingenDeutschland
  3. 3.Abteilung Strukturelle DynamikMax-Planck-Institut für Biophysikalische ChemieGöttingenDeutschland
  4. 4.Bioanalytik, Institut für Klinische ChemieUniversitätsmedizin GöttingenGöttingenDeutschland

Personalised recommendations