Advertisement

BIOspektrum

, Volume 24, Issue 2, pp 152–155 | Cite as

Hitzeliebende Mikroorganismen als Produktionsplattform für Biobrennstoffe

  • Lisa Hitschler
  • Mirko Basen
Wissenschaft · Methoden Thermophile
  • 19 Downloads

Abstract

Enzymes of thermophilic microorganisms have been studied and used in industry and biotechnology for many years. More recently, thermophiles themselves have been proposed as biocatalysts. Here, we briefly describe advantages of high-temperature fermentations, physiological properties of some thermophiles that use lignocellulose or synthesis gas as substrates, and some recent progress in genetic engineering towards their application.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    Lynd LR, Liang X, Biddy MJ et al. (2017) Cellulosic ethanol: status and innovation. Curr Opin Biotechnol 45:202–211CrossRefPubMedGoogle Scholar
  2. [2]
    Keller M, Loder A, Basen M et al. (2014) Production of lignofuels and electrofuels by extremely thermophilic microbes. Biofuels 5:499–515CrossRefGoogle Scholar
  3. [3]
    Elleuche S, Schäfers C, Blank S et al. (2015) Exploration of extremophiles for high temperature biotechnological pro - cesses. Curr Opin Microbiol 25:113–119CrossRefPubMedGoogle Scholar
  4. [4]
    Zeldes BM, Keller MW, Loder AJ et al. (2015) Extremely thermophilic microorganisms as metabolic engineering platforms for production of fuels and industrial chemicals. Front Microbiol 6:1209CrossRefPubMedPubMedCentralGoogle Scholar
  5. [5]
    Quehenberger J, Shen L, Albers SV et al. (2017) Sulfolobus–a potential key organism in future biotechnology. Front Microbiol 8:2474CrossRefPubMedPubMedCentralGoogle Scholar
  6. [6]
    Olson DG, Sparling R, Lynd LR (2015) Ethanol production by engineered thermophiles. Curr Opin Biotechnol 33:130–141CrossRefPubMedGoogle Scholar
  7. [7]
    Bengelsdorf FR, Poehlein A, Linder S et al. (2016) Industrial acetogenic biocatalysts: a comparative metabolic and genomic analysis. Front Microbiol 7:1036CrossRefPubMedPubMedCentralGoogle Scholar
  8. [8]
    Bertsch J, Müller V (2015) Bioenergetic constraints for conversion of syngas to biofuels in acetogenic bacteria. Biotechnol Biofuels 8:210CrossRefPubMedPubMedCentralGoogle Scholar
  9. [9]
    Basen M, Müller V (2017) “Hot” acetogenesis. Extremophiles 21:15–26CrossRefPubMedGoogle Scholar
  10. [10]
    Basen M, Geiger I, Henke L et al. (2018) A genetic system for the thermophilic acetogenic bacterium Thermoanaerobacter kivui. Appl Environ Microbiol 84, doi: 10.1128/AEM.02210-17Google Scholar
  11. [11]
    Basen M, Schut GJ, Nguyen DM et al. (2014) Single gene insertion drives bioalcohol production by a thermophilic archaeon. Proc Natl Acad Sci USA 111:17618–17623CrossRefPubMedPubMedCentralGoogle Scholar
  12. [12]
    Perez JM, Richter H, Loftus SE et al. (2013) Biocatalytic reduction of short-chain carboxylic acids into their corresponding alcohols with syngas fermentation. Biotechnol Bioeng 110:1066–1077CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Molekulare Mikrobiologie Und Bioenergetik, Institut Für Molekulare BiowissenschaftenUniversität Frankfurt a. M.Frankfurt a. M.Germany

Personalised recommendations