Advertisement

BIOspektrum

, Volume 24, Issue 1, pp 39–42 | Cite as

Stammcharakterisierung mittels on-line-Redesign von Experimenten

  • Benjamin Haby
  • Florian Glauche
  • Sebastian Hans
  • M. Nicolas Cruz-Bournazou
  • Peter Neubauer
Wissenschaft · Special: Liquid Handling & Probenvorbereitung Modellbasierte Echtzeitanpassung
  • 31 Downloads

Abstract

The reduction of developmental time is a key factor in the biotech industry. To minimize the risk of failure during scale-up, the experimental conditions during screening and process development should resemble the production scale. With modern parallel cultivation systems, extensive culture monitoring and handling is possible. However, next generation facilities should perform adaptive experiments that are “learning” from the data and selecting the next steps are performed. Coupled with model-based design of experiments, experiments can be re-designed during the runtime.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    Neubauer P, Cruz N, Glauche F et al. (2013) Consistent development of bioprocesses from microliter cultures to the industrial scale. Eng Life Sci 13:224–238CrossRefGoogle Scholar
  2. [2]
    Krause M, Neubauer A, Neubauer P (2016) The fed-batch principle for the molecular biology lab: controlled nutrient diets in ready-made media improve production of recombinant proteins in Escherichia coli. Microb Cell Fact 15:1–13CrossRefGoogle Scholar
  3. [3]
    Siurkus J, Panula-Perälä J, Horn U et al. (2010) Novel approach of high cell density recombinant bioprocess development: optimisation and scale-up from microliter to pilot scales while maintaining the fed-batch cultivation mode of E. coli cultures. Microb Cell Fact 9:1–17CrossRefGoogle Scholar
  4. [4]
    Betts JI, Doig SD, Baganz F (2006) Characterization and application of a miniature 10 mL stirred-tank bioreactor, showing scale-down equivalence with a conventional 7 L reactor. Biotechnol Prog 22:681–688CrossRefPubMedGoogle Scholar
  5. [5]
    Glauche F, Pilarek M, Cruz-Bournazou NM et al. (2017) Design of experiments-based high-throughput strategy for development and optimization of efficient cell disruption protocols. Eng Life Sci 17:1166–1172CrossRefGoogle Scholar
  6. [6]
    Neubauer P, Glauche F, Cruz-Bournazou NM (2017) Editorial: Bioprocess development in the era of digitalization. Eng Life Sci 17:1140–1141CrossRefGoogle Scholar
  7. [7]
    Nickel DB, Cruz-Bournazou NM, Wilms T et al. (2016) Online bioprocess data generation, analysis and optimization for parallel fed-batch fermentations in milliliter scale. Eng Life Sci 17:1195–1201CrossRefGoogle Scholar
  8. [8]
    Bournazou MNC, Barz T, Nickel D et al. (2017) Online optimal experimental re-design in robotic parallel fed-batch cultivation facilities. Biotechnol Bioeng 114:610–619CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  • Benjamin Haby
    • 1
  • Florian Glauche
    • 1
  • Sebastian Hans
    • 1
  • M. Nicolas Cruz-Bournazou
    • 1
  • Peter Neubauer
    • 1
  1. 1.Fachgebiet Bioverfahrenstechnik Institut für BiotechnologieTechnische Universität BerlinBerlinDeutschland

Personalised recommendations