Advertisement

BIOspektrum

, Volume 24, Issue 1, pp 12–15 | Cite as

Zirkuläre RNAs: neue Spieler im Kreise der Genregulation

  • Laura Santer
  • Christian Bär
  • Thomas Thum
Wissenschaft Nicht-codierende RNAs
  • 42 Downloads

Abstract

High throughput whole transcriptome sequencing led to the discovery of a new class of non-coding RNAs: circular RNAs (circRNAs). Such single-stranded continuous loop RNAs exist for thousands of genes. Here, we present an overview of circRNA discovery and formation. We sum up some circRNA detection methods and highlight different molecular mechanisms of action. However, circRNA functional characterization is still at its very beginning and thus an increasing research field in our and other groups.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    ENCODE Project Consortium (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74CrossRefGoogle Scholar
  2. [2]
    Jeck WR, Sorrentino JA, Wang K et al. (2013) Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19:141–157CrossRefPubMedPubMedCentralGoogle Scholar
  3. [3]
    Memczak S, Jens M, Elefsinioti A et al. (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495:333–338CrossRefPubMedGoogle Scholar
  4. [4]
    Nigro JM, Cho KR, Fearon ER et al. (1991) Scrambled exons. Cell 64:607–613CrossRefPubMedGoogle Scholar
  5. [5]
    Cocquerelle C, Mascrez B, Hétuin D et al. (1993) Missplicing yields circular RNA molecules. FASEB J 7:155–160CrossRefPubMedGoogle Scholar
  6. [6]
    Conn SJ, Pillman AK, Toubia J et al. (2015) The RNA binding protein quaking regulates formation of circRNAs. Cell 160:1125–1134CrossRefPubMedGoogle Scholar
  7. [7]
    Piwecka M, Glažar P, Hernandez-Miranda LR et al. (2017) Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science 357, doi: 10.1126/science.aam8526Google Scholar
  8. [8]
    Capel B, Swain A, Nicolis S et al. (1993) Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell 73:1019–1030CrossRefPubMedGoogle Scholar
  9. [9]
    Fan X, Weng X, Zhao Y (2017) Circular RNAs in cardiovascular disease: an overview. Biomed Res Int, doi: 10.1155/2017/5135781Google Scholar
  10. [10]
    Du WW, Yang W, Chen Y et al. (2017) Foxo3 circular RNA promotes cardiac senescence by modulating multiple factors associated with stress and senescence responses. Eur Heart J 38:1402–1412CrossRefPubMedGoogle Scholar
  11. [11]
    Du WW, Yang W, Liu E et al. (2016) Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acid Res 44:2846–2858CrossRefPubMedPubMedCentralGoogle Scholar
  12. [12]
    Li XF, Lytton J (1999) A circularized sodium-calcium exchanger exon 2 transcript. J Biol Chem 274:8153–8160CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Institut für Molekulare und Translationale TherapiestrategienMedizinische Hochschule HannoverHannoverDeutschland

Personalised recommendations