Herstellung von polyzyklischen Diterpenen

Abstract

Diterpenes constitute a versatile class of natural biomolecules predominantly derived from plants, fungi and prokaryotes. Properties of these natural products include anti-tumour, anti-inflammatory, antibiotic, and insecticidal activities, which makes these compounds high value commercial targets for the chemical and pharmaceutical industry. Since chemical synthesis of terpenes can be difficult, production can be alternatively performed in engineered microorganisms on natural occurring routes.

This is a preview of subscription content, access via your institution.

Literatur

  1. [1]

    Christianson DW (2008) Unearthing the roots of the terpenome. Curr Opin Chem Biol 12:141–150

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. [2]

    Kemper K, Hirte M, Reinbold M et al. (2017) Opportunities and challenges for the sustainable production of structurally complex diterpenoids in recombinant microbial systems. Beilstein J Org Chem 13:845–854

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. [3]

    Brück T, Kourist R, Loll B (2014) Production of macrocyclic sesqui- and diterpenes in heterologous microbial hosts: a systems approach to harness nature’s molecular diversity. ChemCatChem, doi: 101002/cctc201300733

    Google Scholar 

  4. [4]

    Köksal M, Jin Y, Coates RM et al. (2011) Taxadiene synthase structure and evolution of modular architecture in terpene biosynthesis. Nature 469:116–120

    Article  PubMed  Google Scholar 

  5. [5]

    Nicolaou KC, Yang Z, Liu JJ et al. (1994) Total synthesis of taxol. Nature 367:630–634

    CAS  Article  PubMed  Google Scholar 

  6. [6]

    Janke R, Görner C, Hirte M et al. (2014) The first structure of a bacterial diterpene cyclase: CotB2. Acta Crystallogr D Biol Crystallogr 70:1528–1537

    CAS  Article  PubMed  Google Scholar 

  7. [7]

    Boghigian BA, Salas D, Ajikumar PK et al. (2012) Analysis of heterologous taxadiene production in K- and B-derived Escherichia coli. Appl Microbiol Biotechnol 93:1651–1661

    CAS  Article  PubMed  Google Scholar 

  8. [8]

    Yuan C, Jin Y, Wilde NC et al. (2016) Short, enantioselective total synthesis of highly oxidized taxanes. Angew Chem Int Ed Engl 55:8280–8284

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. [9]

    Christmann M (2008) Selective oxidation of aliphatic C-H bonds in the synthesis of complex molecules. Angew Chem Int Ed Engl 47:2740–2742

    CAS  Article  PubMed  Google Scholar 

  10. [10]

    Görner C, Häuslein I, Schrepfer P et al. (2013) Targeted engineering of cyclooctat-9-en-7-ol synthase: a stereospecific access to two new, non-natural fusicoccane-type diterpenes. ChemCatChem, doi: 10.1002/cctc.201300285

    Google Scholar 

  11. [11]

    Görner C, Schrepfer P, Redai V et al. (2016) Identification, characterization and molecular adaptation of class I redox systems for the production of hydroxylated diterpenoids. Microb Cell Fact 15:86

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bernhard Loll.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Janke, R., Fuchs, M., Christmann, M. et al. Herstellung von polyzyklischen Diterpenen. Biospektrum 23, 709–711 (2017). https://doi.org/10.1007/s12268-017-0858-5

Download citation