, Volume 23, Issue 6, pp 634–637 | Cite as

Bakterien-induzierte Morphogenese mariner Eukaryoten

  • Maja Rischer
  • Daniel Leichnitz
  • Christine BeemelmannsEmail author
Wissenschaft Chemische Ökologie


The chemical analysis of bacteria-induced morphogenesis of marine microeukaryotes and invertebrates is of fundamental importance and provides insight into metazoan evolution and the origins of morphological complexity. In only few cases the morphogenesis-inducing bacteria could be characterized and the responsible signalling molecules identified. Using defined model systems of cross-kingdom interactions is essential to dissect the molecular mechanisms and chemical signals involved.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    McFall-Ngai M, Hadfield MG, Bosch TC et al. (2013) Animals in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci USA 110:3229–3236CrossRefPubMedPubMedCentralGoogle Scholar
  2. [2]
    Kuhlisch C, Pohnert G (2015) Metabolomics in chemical ecology. Nat Prod Rep 32:937–955CrossRefPubMedGoogle Scholar
  3. [3]
    Selandera E, Kubanek J, Hamberg M et al. (2015) Predator lipids induce paralytic shellfish toxins in bloom-forming algae. Proc Natl Acad Sci USA 112:6395–6400CrossRefGoogle Scholar
  4. [4]
    Pondaven P, Gallinari M, Chollet S et al. (2007) Grazing-induced changes in cell wall silicification in a marine diatom. Protist 158:21–28CrossRefPubMedGoogle Scholar
  5. [5]
    Beemelmanns C, Woznica A, Alegado RA et al. (2014) Synthesis of the rosette-inducing factor RIF-1 and analogs. J Am Chem Soc 136:10210–10213CrossRefPubMedPubMedCentralGoogle Scholar
  6. [6]
    Woznica A, Cantley AM, Beemelmanns C et al. (2016) Bacterial lipids activate, synergize, and inhibit a developmental switch in choanoflagellates. Proc Natl Acad Sci USA 113:7894–7899CrossRefPubMedPubMedCentralGoogle Scholar
  7. [7]
    Hadfield MG (2011) Biofilms and marine invertebrate larvae: what bacteria produce that larvae use to choose settlement sites. Annu Rev Mar Sci 3:453–470CrossRefGoogle Scholar
  8. [8]
    Wichard T (2015) Frontiers exploring bacteria-induced growth and morphogenesis in the green macroalga order Ulvales (Chlorophyta). Front Plant Sci 6:86PubMedPubMedCentralGoogle Scholar
  9. [9]
    Tebben J, Tapiolas DM, Motti CA et al. (2011) Induction of larval metamorphosis of the coral Acropora millepora by tetrabromopyrrole isolated from a Pseudoalteromonas bacterium. PLoS One 6:e19082CrossRefPubMedPubMedCentralGoogle Scholar
  10. [10]
    Uemura D, Kita M, Arimoto H et al. (2009) Recent aspects of chemical ecology: natural toxins, coral communities, and symbiotic relationships. Pure Appl Chem 81:1093–1111CrossRefGoogle Scholar
  11. [11]
    Guo H, Rischer M, Sperfeld M et al. (2017) Natural products and morphogenic activity of γ-Proteobacteria associated with the marine hydroid polyp Hydractinia echinata. Bioorg Med Chem, doi: 10.1016/j.bmc.2017.06.053Google Scholar
  12. [12]
    Shikuma NJ, Pilhofer M, Weiss GL et al. (2014) Marine tubeworm metamorphosis induced by arrays of bacterial phage tail-like structures. Science 343:529–533CrossRefPubMedPubMedCentralGoogle Scholar
  13. [13]
    Freckelton ML, Nedved BT, Hadfield MG (2017) Induction of Invertebrate Larval Settlement; Different Bacteria, Different Mechanisms? Sci Rep 7:42557CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland 2017

Authors and Affiliations

  • Maja Rischer
    • 1
  • Daniel Leichnitz
    • 1
  • Christine Beemelmanns
    • 1
    Email author
  1. 1.Chemische Biologie der Mikroben-Wirt-InteraktionenLeibniz-Institut für Naturstoff-Forschung und Infektionsbiologie e. V. (HKI)JenaDeutschland

Personalised recommendations