Advertisement

BIOspektrum

, Volume 23, Issue 5, pp 536–539 | Cite as

Beschleunigte Bioprozessentwicklung im automatisierten Mikromaßstab

  • Holger Morschett
  • Stephan Noack
  • Marco OldigesEmail author
Wissenschaft · Special: Laborautomation Industrielle Biotechnologie
  • 51 Downloads

Abstract

Modern bioprocess development includes extensive screening tasks, but many tools tackling the resulting combinatorial explosion do not provide production scale relevant conditions. Thus, novel technologies are needed for scalable data acquisition via incorporation of miniaturization, automation and digitalization. The Microbial Bioprocess Lab–a Helmholtz Innovation Lab strives at designing such disruptive technologies and to catalyze their translation from science into industrial application.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    Doig SD, Baganz F, Lye GJ (2006) High-throughput screening and process optimisation. In: Ratledge C, Kristiansen B (Hrsg) Basic Biotechnology. Cambridge University Press, CambridgeGoogle Scholar
  2. [2]
    Schallmey M, Frunzke J, Eggeling L et al. (2014) Looking for the pick of the bunch: high-throughput screening of producing microorganisms with biosensors. Curr Opin Biotech 26:148–154CrossRefPubMedGoogle Scholar
  3. [3]
    Binder S, Schendzielorz G, Stäbler N et al. (2012) A high-throughput approach to identify genomic variants of bacterial metabolite producers at the single-cell level. Genome Biol 13:R40CrossRefPubMedPubMedCentralGoogle Scholar
  4. [4]
    Freier L, Hemmerich J, Schöler K et al. (2016) Framework for Kriging-based iterative experimental analysis and design: optimization of secretory protein production in Corynebacterium glutamicum. Eng Life Sci, 16:538–549CrossRefGoogle Scholar
  5. [5]
    Morschett H, Freier L, Rohde J et al. (2017) A framework for accelerated phototrophic bioprocess development: integration of parallelized microscale cultivation, laboratory automation and Kriging-assisted experimental design. Biotechnol Biofuels 10:26CrossRefPubMedPubMedCentralGoogle Scholar
  6. [6]
    Rohe P, Venkanna D, Kleine B et al. (2012) An automated workflow for enhancing microbial bioprocess optimization on a novel microbioreactor platform. Microb Cell Fact 11:144CrossRefPubMedPubMedCentralGoogle Scholar
  7. [7]
    Hemmerich J, Rohe P, Kleine B et al. (2016) Use of a Sec signal peptide library from Bacillus subtilis for the optimization of cutinase secretion in Corynebacterium glutamicum. Microb Cell Fact 15:208CrossRefPubMedPubMedCentralGoogle Scholar
  8. [8]
    Unthan S, Radek A, Wiechert W et al. (2015) Bioprocess automation on a Mini Pilot Plant enables fast quantitative microbial phenotyping. Microb Cell Fact 14:32CrossRefPubMedPubMedCentralGoogle Scholar
  9. [9]
    Koepff J, Keller M, Tsolis KC et al. (2017) Fast and reliable strain characterization of Streptomyces lividans through micro-scale cultivation. Biotechnol Bioeng 114:2011–2022CrossRefPubMedGoogle Scholar
  10. [10]
    Radek A, Tenhaef N, Müller MF et al. (2017) Miniaturized and automated adaptive laboratory evolution: evolving Corynebacterium glutamicum towards an improved D-xylose utilization. Bioresour Technol, doi: 10.1016/j.biortech.2017.05.055Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland 2017

Authors and Affiliations

  • Holger Morschett
    • 1
  • Stephan Noack
    • 1
  • Marco Oldiges
    • 1
    Email author
  1. 1.Institut für Bio- und Geowissenschaften – IBG-1: Biotechnologie Forschungszentrum Jülich GmbHJülichDeutschland

Personalised recommendations