Abstract
Actual studies show a growing demand for automation solutions in single sample handling in contrast to the parallel microplate based handling in classical biological applications. The efficiency of life science laboratories can be increased with the introduction of innovative and flexible sample handling systems. This includes the development of tube handling systems including a detection of the tube type, the liquid level and phase detection.
This is a preview of subscription content, access via your institution.
Literatur
Kong F, Yuan L, Zheng YF et al. (2012) Automatic liquid handling for life science: A critical review of the current state of the art. J Lab Autom 17:169–185
HTStec Ltd. (2015) Benchtop Automation Trends 2015. Godalming, Surrey
Laycock JD, Hartmann T (2005) Automation. In: Lee MS (Hrsg) Integrated Strategies for Drug Discovery Using Mass Spectrometry. Wiley, New York, S 511–542
McDowall RD (2014) Developing a strategy for a regulated electronic bioanalytical laboratory. Bioanalysis 6:165–184
Linder M (1990) Laboratory Automation and Robotics-Quo Vadis? In: Karjalainen EJ (Hrsg) Data Handling in Science and Technology, Vol. 6 (C). S 273–284
Devi HKA (2006) Thresholding: A Pixel-Level Image Processing Methodology Preprocessing Technique for an OCR System for the Brahmi Script. Anc Asia 1:161–165
Hamuda E, McGinley B, Glavin M et al. (2017) Automatic crop detection under field conditions using the HSV colour space and morphological operations. Comput Electron Agric 133:97–107
Sütó B, Dócz R, Kalló J et al. (2016) HSV color space based buoy detection module for autonomous underwater vehicles. CINTI 2015–16th IEEE International Symposium on Computational Intelligence and Informatics, Proceedings, 7382944:329–332
Pavlova PE, Cyrrilov KP, Moumdjiev IN (1996) Application of HSV colour system in identification by colour of biological objects on the basis of microscopic images. Comput Med Imaging Graph 20:357–364
Author information
Authors and Affiliations
Corresponding author
Additional information
Kerstin Thurow Chemiestudium in Rostock. 1995 Promotion an der LMU München. 1999 Habilitation Mess- und Regelungstechnik an der Universität Rostock. 1999–2004 Professur für Laborautomation, seit 2004 Professur für Life Science Automation/Automatisierungs technik an der Universität Rostock. Seit 2004 Direktorin des Center for Life Science Automation, Universität Rostock.
Thomas Roddelkopf Bis 1996 Elektrotechnikstudium an der Universität Rostock, 2006 Promotion, seit 2002 wissenschaftlicher Mitarbeiter an der Universität Rostock.
Steffen Junginger Bis 1998 Elektrotechnikstudium an der Universität Rostock, 2011 Promotion, seit 2007 wissenschaftlicher Mitarbeiter an der Universität Rostock.
Rights and permissions
About this article
Cite this article
Thurow, K., Junginger, S. & Roddelkopf, T. Automatisiertes tube storage-System für Bioanalytik und Diagnostik. Biospektrum 23, 531–534 (2017). https://doi.org/10.1007/s12268-017-0837-x
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12268-017-0837-x