Automatisiertes tube storage-System für Bioanalytik und Diagnostik

Abstract

Actual studies show a growing demand for automation solutions in single sample handling in contrast to the parallel microplate based handling in classical biological applications. The efficiency of life science laboratories can be increased with the introduction of innovative and flexible sample handling systems. This includes the development of tube handling systems including a detection of the tube type, the liquid level and phase detection.

This is a preview of subscription content, log in to check access.

Literatur

  1. [1]

    Kong F, Yuan L, Zheng YF et al. (2012) Automatic liquid handling for life science: A critical review of the current state of the art. J Lab Autom 17:169–185

    CAS  Article  PubMed  Google Scholar 

  2. [2]

    HTStec Ltd. (2015) Benchtop Automation Trends 2015. Godalming, Surrey

    Google Scholar 

  3. [3]

    Laycock JD, Hartmann T (2005) Automation. In: Lee MS (Hrsg) Integrated Strategies for Drug Discovery Using Mass Spectrometry. Wiley, New York, S 511–542

    Google Scholar 

  4. [4]

    McDowall RD (2014) Developing a strategy for a regulated electronic bioanalytical laboratory. Bioanalysis 6:165–184

    CAS  Article  PubMed  Google Scholar 

  5. [5]

    Linder M (1990) Laboratory Automation and Robotics-Quo Vadis? In: Karjalainen EJ (Hrsg) Data Handling in Science and Technology, Vol. 6 (C). S 273–284

    Google Scholar 

  6. [6]

    Devi HKA (2006) Thresholding: A Pixel-Level Image Processing Methodology Preprocessing Technique for an OCR System for the Brahmi Script. Anc Asia 1:161–165

    Article  Google Scholar 

  7. [7]

    Hamuda E, McGinley B, Glavin M et al. (2017) Automatic crop detection under field conditions using the HSV colour space and morphological operations. Comput Electron Agric 133:97–107

    Article  Google Scholar 

  8. [8]

    Sütó B, Dócz R, Kalló J et al. (2016) HSV color space based buoy detection module for autonomous underwater vehicles. CINTI 2015–16th IEEE International Symposium on Computational Intelligence and Informatics, Proceedings, 7382944:329–332

    Google Scholar 

  9. [9]

    Pavlova PE, Cyrrilov KP, Moumdjiev IN (1996) Application of HSV colour system in identification by colour of biological objects on the basis of microscopic images. Comput Med Imaging Graph 20:357–364

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kerstin Thurow.

Additional information

Kerstin Thurow Chemiestudium in Rostock. 1995 Promotion an der LMU München. 1999 Habilitation Mess- und Regelungstechnik an der Universität Rostock. 19992004 Professur für Laborautomation, seit 2004 Professur für Life Science Automation/Automatisierungs technik an der Universität Rostock. Seit 2004 Direktorin des Center for Life Science Automation, Universität Rostock.

Thomas Roddelkopf Bis 1996 Elektrotechnikstudium an der Universität Rostock, 2006 Promotion, seit 2002 wissenschaftlicher Mitarbeiter an der Universität Rostock.

Steffen Junginger Bis 1998 Elektrotechnikstudium an der Universität Rostock, 2011 Promotion, seit 2007 wissenschaftlicher Mitarbeiter an der Universität Rostock.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Thurow, K., Junginger, S. & Roddelkopf, T. Automatisiertes tube storage-System für Bioanalytik und Diagnostik. Biospektrum 23, 531–534 (2017). https://doi.org/10.1007/s12268-017-0837-x

Download citation