Skip to main content
Log in

Hypoxie – Wenn weniger (Sauerstoff) mehr (Stammzellen) macht

Physiologische Kultivierung

  • Wissenschaft · Special: Zellbiologie
  • Published:
BIOspektrum Aims and scope

Abstract

The standard cell culture oxygen concentration of 21 percent O2 does not represent the physiologic environment of stem cells. Indeed, hypoxic (< 21 percent O2) conditions heavily affect cellular processes such as growth, apoptosis and energy metabolism. In the context of clinical trials a fast ex vivo expansion of stem cells while maintaining their stem cell properties is crucial. However, maintaining hypoxic conditions during cultivation is challenging and puts high requirements on laboratory equipment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Dominici M, Le Blanc K, Mueller I et al. (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    CAS  PubMed  Google Scholar 

  2. Harrison JS, Rameshwar P, Chang V et al. (2002) Oxygen saturation in the bone marrow of healthy volunteers. Blood 99:394

    Article  CAS  PubMed  Google Scholar 

  3. Chow DC, Wenning LA, Miller WM et al. (2001) Modeling pO(2) distributions in the bone marrow hematopoietic compartment. I. Krogh’s model. Biophys J 81:675–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lavrentieva A, Majore I, Kasper C et al. (2010) Effects of hypoxic culture conditions on umbilical cordderived human mesenchymal stem cells. Cell Commun Signal 8:18

    Article  PubMed  PubMed Central  Google Scholar 

  5. Buravkova LB, Andreeva ER, Gogvadze V et al. (2014) Mesenchymal stem cells and hypoxia: Where are we? Mitochondrion 19:105–112

    Article  CAS  PubMed  Google Scholar 

  6. Semenza GL (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3:721–732

    Article  CAS  PubMed  Google Scholar 

  7. Estrada JC, Albo C, Benguria A et al. (2012) Culture of human mesenchymal stem cells at low oxygen tension improves growth and genetic stability by activating glycolysis. Cell Death Differ 19:743–755

    Article  CAS  PubMed  Google Scholar 

  8. Zähringer H (2015) Weniger ist mehr. Laborjournal 1:52–61

    Google Scholar 

  9. Wang S, Qu X, Zhao RC (2012) Clinical applications of mesenchymal stem cells. J Hematol Oncol 5:19

    Article  PubMed  PubMed Central  Google Scholar 

  10. Røsland GV, Svendsen A, Torsvik A et al. (2009) Long-term cultures of bone marrow-derived human mesenchymal stem cells frequently undergo spontaneous malignant transformation. Cancer Res 69:5331–5339

    Article  PubMed  Google Scholar 

  11. Jewell UR, Kvietikova I, Scheid A et al. (2001) Induction of HIF-1a in response to hypoxia is instantaneous. FASEB J 15:1312–1314

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelia Kasper.

Additional information

Cornelia Kasper 1994 Diplom Chemie. 1998 Doktortitel Technische Chemie. 2007 Habilitation an der Universität Hannover, dort 2000–2011 Leiterin der Arbeitsgruppe „Zellkultur und Tissue Engineering“. Seit 2011 Universitätsprofessorin an der Universität für Bodenkultur in Wien, Österreich.

Dominik Egger 2014 M. Sc. Life Science an der Leibniz Universität Hannover. Bis 2017 Promotion an der Universität für Bodenkultur (Labor Prof. Dr. C. Kasper) in Wien, Österreich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kasper, C., Egger, D. Hypoxie – Wenn weniger (Sauerstoff) mehr (Stammzellen) macht. Biospektrum 23, 404–407 (2017). https://doi.org/10.1007/s12268-017-0818-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12268-017-0818-0

Navigation