Skip to main content
Log in

Lichtgetriebene Ganzzellbiotransformation mit rekombinanten Cyanobakterien

  • Biotechnologie
  • Photobiokatalyse
  • Published:
BIOspektrum Aims and scope

Abstract

Photosynthetic microorganisms have received considerable attention as production organisms for chemicals. An investigation of the photosynthetic NADPH supply for enantioselective biotransformations with recombinant cyanobacteria showed that the specific activity of the cells is comparable to heterotrophic organisms. Light-dispersion of the cells, however, limits the approach. A wide use as production organisms requires an improvement of several magnitudes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Honda Y, Hagiwara H, Ida S et al. (2016) Application to photocatalytic H2 production of a whole-cell reaction by recombinant Escherichia coli cells expressing [FeFe]-hydrogenase and maturases genes. Ang Chem Int Ed 55:8045–8048

    Article  CAS  Google Scholar 

  2. Park JH, Lee SH, Cha GS et al. (2015) Cofactor-free lightdriven whole-cell cytochrome P450 catalysis. Ang Chem 127:983–987

    Article  Google Scholar 

  3. Górak M, Żymańczyk-Duda E (2015) Application of cyanobacteria for chiral phosphonate synthesis. Green Chem 17:4570–4578

    Article  CAS  Google Scholar 

  4. Atsumi S, Higashide W, Liao JC (2009) Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nat Biotechnol 27:1177–1180

    Article  CAS  PubMed  Google Scholar 

  5. Abe K, Miyake K, Nakamura M et al. (2014) Engineering of a green-light inducible gene expression system in Synechocystis sp. PCC6803. Microb Biotechnol 7:177–183

    Article  CAS  PubMed  Google Scholar 

  6. Krassen H, Schwarze A, Friedrich Br et al. (2009) Photosynthetic hydrogen production by a hybrid complex of photosystem I and [NiFe]-hydrogenase. ACS Nano 3:4055–4061

    Article  CAS  PubMed  Google Scholar 

  7. Nowaczyk MM, Sander J, Grasse N et al. (2010) Dynamics of the cyanobacterial photosynthetic network: communication and modification of membrane protein complexes. Eur J Cell Biol 89:974–982

    Article  CAS  PubMed  Google Scholar 

  8. Dau H, Zaharieva I (2009) Principles, efficiency, and blueprint character of solar-energy conversion in photosynthetic water oxidation. Acc Chem Res 42:1861–1870

    Article  CAS  PubMed  Google Scholar 

  9. Kothe T, Plumere N, Badura A et al. (2013) Combination of a photosystem 1-based photocathode and a photosystem 2-based photoanode to a Z-scheme mimic for biophotovoltaic applications. Ang Chem Int Ed 52:14233–14236

    Article  CAS  Google Scholar 

  10. Heinz S, Liauw P, Nickelsen J et al. (2016) Analysis of photosystem II biogenesis in cyanobacteria. Biochem Biophys Acta 1857:274–287

    CAS  PubMed  Google Scholar 

  11. Bernát G, Waschewski N, Rögner M (2009) Towards efficient hydrogen production: the impact of antenna size and external factors on electron transport dynamics in Synechocystis PCC 6803. Photosynth Res 99:205–216

    Article  CAS  PubMed  Google Scholar 

  12. Köninger K, Gomez-Baraibar A, Mügge C et al. (2016) Recombinant cyanobacteria as tools for asymmetric C=C bond reduction fueled by biocatalytic water oxidation. Ang Chem Int Ed 55:5582–5585

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Kourist.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nowaczyk, M., Kourist, R. Lichtgetriebene Ganzzellbiotransformation mit rekombinanten Cyanobakterien. Biospektrum 22, 765–767 (2016). https://doi.org/10.1007/s12268-016-0754-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12268-016-0754-4

Navigation