Skip to main content
Log in

Fluoreszierende Proteinsensoren für die Redoxregulation in lebenden Zellen

  • Wissenschaft · Methoden
  • In vivo-Biosensoren
  • Published:
BIOspektrum Aims and scope

Abstract

Redox signalling is increasingly recognized to play a crucial role in cellular and organismal physiology. Whilst we have made considerable advances in recent years with respect to understanding the roles and regulation of many different cellular redox species, research remains restricted by a lack of appropriate tools and techniques. Here we discuss the opportunities afforded by recently developed genetically encoded redox sensors and illustrate how they have already advanced our understanding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Holmström KM, Finkel T (2014) Cellular mechanisms and physiological consequences of redox-dependent signaling. Nat Rev Mol Cell Biol 15:411–421

    Article  PubMed  Google Scholar 

  2. Ostergaard H, Tachibana C, Winther JR (2004) Monitoring disulfide bond formation in the eukaryotic cytosol. J Cell Biol 166:337–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dooley CT, Dore TM, Hanson GT et al. (2004) Imaging dynamic redox changes in mammalian cells with green fluorescent protein indicators. J Biol Chem 279:22284–22293

    Article  CAS  PubMed  Google Scholar 

  4. Hanson GT, Aggeler R, Oglesbee D et al. (2004) Investigating mitochondrial redox potential with redoxsensitive green fluorescent protein indicators. J Biol Chem 279:13044–13053

    Article  CAS  PubMed  Google Scholar 

  5. Schwarzländer M, Wagner S, Ermakova YG et al. (2014) The ‘mitoflash’ probe cpYFP does not respond to superoxide. Nature 514:e12–E14

    Article  Google Scholar 

  6. Meyer AJ, Brach T, Marty L et al. (2007) Redox-sensitive GFP in Arabidopsis thaliana is a quantitative biosensor for the redox potential of the cellular glutathione redox buffer. Plant J 52:973–986

    Article  CAS  PubMed  Google Scholar 

  7. Gutscher M, Pauleau AL, Marty L et al. (2008) Realtime imaging of the intracellular glutathione redox potential. Nat Methods 5:553–559

    Article  CAS  PubMed  Google Scholar 

  8. Gutscher M, Sobotta MC, Wabnitz GH et al. (2009) Proximity-based protein thiol oxidation by H2O2-scavenging peroxidases. J Biol Chem 284:31532–31540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schwarzländer M, Fricker MD, Müller C et al. (2008) Confocal imaging of glutathione redox poise in living plant cells. J Microsc 231:299–316

    Article  PubMed  Google Scholar 

  10. Schwarzländer M, Dick TP, Meyer AJ et al. (2015) Dissecting redox biology using fluorescent protein sensors. Antioxid Redox Signal, doi: 10.1089/ars.2015.6266

    Google Scholar 

  11. Morgan B, Ezerina D, Amoako TN et al. (2013) Multiple glutathione disulfide removal pathways mediate cytosolic redox homeostasis. Nat Chem Biol 9:119–125

    Article  CAS  PubMed  Google Scholar 

  12. Minich T, Riemer J, Schulz JB et al. (2006) The multidrug resistance protein 1 (Mrp1), but not Mrp5, mediates export of glutathione and glutathione disulfide from brain astrocytes. J Neurochem 97:373–384

    Article  CAS  PubMed  Google Scholar 

  13. Martinoia E, Grill E, Tommasini R et al. (1993) ATPdependent glutathione S-conjugate ‘export’ pump in the vacuolar membrane of plants. Nature 364:247–249

    Article  CAS  Google Scholar 

  14. Lu Y-P, Li Z-S, Drozdowicz YM et al. (1998) AtMRP2, an Arabidopsis ATP binding cassette transporter able to transport glutathione S-conjugates and chlorophyll catabolites: functional comparisons with AtMRP1. Plant Cell 10:267–282

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Kojer K, Bien M, Gangel H et al. (2012) Glutathione redox potential in the mitochondrial intermembrane space is linked to the cytosol and impacts the Mia40 redox state. EMBO J 31:3169–3182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hwang C, Sinskey AJ, Lodish HF (1992) Oxidized redox state of glutathione in the endoplasmic reticulum. Science 257:1496–1502

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bruce Morgan or Markus Schwarzländer.

Additional information

Bruce Morgan Jahrgang 1980. Mikrobiologiestudium an der University of Wales in Cardiff, UK. 2007 Promotion an der University of Manchester, UK. 20082009 wissenschaftlicher Mit arbeiter. 20102014 wissenschaftlicher Mitarbeiter am Deutschen Krebsforschungszentrum (DKFZ), Heidelberg. 2015 Gruppenleiter in Zellulärer Biochemie, TU Kaisers lautern.

Markus Schwarzländer Jahrgang 1982. Chemie- und Biochemiestudium an der LMU München. 2009 Promotion an der University of Oxford, UK. 20092011 Weston Junior Research Fellow am Department of Plant Sciences und New College, University of Oxford. 20112013 wissenschaftlicher Mitarbeiter an der Universität Bonn; dort seit 2013 Emmy Noether-Nachwuchsgruppenleiter in Plant Energy Biology.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morgan, B., Schwarzländer, M. Fluoreszierende Proteinsensoren für die Redoxregulation in lebenden Zellen. Biospektrum 22, 260–263 (2016). https://doi.org/10.1007/s12268-016-0683-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12268-016-0683-2

Navigation