Skip to main content

Proteinvermessung: Präzise Abstandsverteilungen im Nanometerbereich

Abstract

Long range distance constraints are crucial for investigating structure and dynamics of bio-macromolecules. Exploiting electron paramagnetic resonance spectroscopy in combination with site-directed spin labelling gives access to precise distance distributions in the nanometer range, even for large protein complexes and in complex environments, e. g., in cellula.

This is a preview of subscription content, access via your institution.

Literatur

  1. Heyduk T (2002) Measuring protein conformational changes by FRET/LRET. Curr Opin Biotechnol 13:292–296

    CAS  Article  PubMed  Google Scholar 

  2. Hubbell WL, Altenbach C (1994) Site-Directed Spin Labeling of Membrane Proteins. In: White SH (Hrsg) Membrane Protein Structure. Springer, New York, S 224–248

    Chapter  Google Scholar 

  3. Likhtenshtein GI, Yamauchi J, Nakatsuji S et al. (2008) Nitroxides: Applications in Chemistry, Biomedicine, and Materials Science. John Wiley & Sons, Weinheim

    Book  Google Scholar 

  4. Schmidt MJ, Borbas J, Drescher M et al. (2014) A genetically encoded spin label for electron paramagnetic resonance distance measurements. J Am Chem Soc 136:1238–1241

    CAS  Article  PubMed  Google Scholar 

  5. Klare JP, Steinhoff H-J (2009) Spin labeling EPR. Photosynth Res 102:377–390

    CAS  Article  PubMed  Google Scholar 

  6. Jeschke G (2012) DEER distance measurements on proteins. Annu Rev Phys Chem 63:419–446

    CAS  Article  PubMed  Google Scholar 

  7. Robotta M, Gerding HR, Vogel A et al. (2014) Alpha- Synuclein binds to the inner membrane of mitochondria in an a-helical conformation. Chembiochem 15:2499–2502

    CAS  Article  PubMed  Google Scholar 

  8. Azarkh M, Singh V, Okle O et al. (2013) Site-directed spinlabeling of nucleotides and the use of in-cell EPR to determine long-range distances in a biologically relevant environment. Nat Protoc 8:131–147

    CAS  Article  PubMed  Google Scholar 

  9. Qi M, Groß A, Jeschke G et al. (2014) Gd(III)-PyMTA label is suitable for in-cell EPR. J Am Chem Soc 136:15366–15378

    CAS  Article  PubMed  Google Scholar 

  10. Hänsel R, Luh LM, Corbeski I et al. (2014) In-cell NMR and EPR spectroscopy of biomacromolecules. Angew Chem Int Ed 53:10300–10314

    Article  Google Scholar 

  11. Robotta M, Braun P, van Rooijen B et al. (2011) Direct evidence of coexisting horseshoe and extended helix conformations of membrane-bound alpha-synuclein. Chemphyschem 12:267–269

    CAS  Article  PubMed  Google Scholar 

  12. Drescher M, Huber M, Subramaniam V (2012) Hunting the chameleon: structural conformations of the intrinsically disordered protein alpha-synuclein. Chembiochem 13:761–768

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malte Drescher.

Additional information

Julia Cattani, Marta Robotta und Malte Drescher (v. l. n. r.) nutzen ESR-Spektroskopie zur Untersuchung intrinsisch ungeordneter Proteine im Rahmen des SFB 969 (Chemical and Biological Principles of Cellular Proteo - stasis) an der Universität Konstanz. Sie sind Mitglieder des Fachbereichs Chemie und der Graduiertenschule Chemische Biologie.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cattani, J., Robotta, M. & Drescher, M. Proteinvermessung: Präzise Abstandsverteilungen im Nanometerbereich. Biospektrum 21, 718–720 (2015). https://doi.org/10.1007/s12268-015-0638-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12268-015-0638-z