BIOspektrum

, Volume 21, Issue 6, pp 672–674 | Cite as

Methanol als alternative Kohlenstoffquelle für mikrobielle Produktionsprozesse

Industrielle Biotechnologie
  • 40 Downloads

Abstract

Methanol is an attractive alternative carbon source for industrial biotechnology. Methylobacterium species represent suitable microorganisms to convert methanol into valuable multi-carbon chemicals, as their complex central metabolism provides many different useful starting intermediates for establishing efficient production pathways. Here we describe recent results to produce dicarboxylic acids and terpenoids in M. extorquens.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    Mac Lennan DG, Gow JS, Stringer DA (1973) The ICI methanol-bacterium process for the production of single-cell protein. Proc Roy Aust Chem Inst 40:54–61Google Scholar
  2. [2]
    Sonntag F, Buchhaupt M, Schrader J (2014) Thioesterases for ethylmalonyl-CoA pathway derived dicarboxylic acid production in Methylobacterium extorquens AM1. Appl Microbiol Biotechnol 98:4533–4544CrossRefPubMedGoogle Scholar
  3. [3]
    Erb TJ, Berg IA, Brecht V et al. (2007) Synthesis of C5- dicarboxylic acids from C2-units involving crotonyl-CoA carboxylase/ reductase: The ethylmalonyl-CoA pathway. Proc Natl Acad Sci 104: 10631–10636PubMedCentralCrossRefPubMedGoogle Scholar
  4. [4]
    Alber BE (2011) Biotechnological potential of the ethylmalonyl- CoA pathway. Appl Microbiol Biotechnol 89:17–25CrossRefPubMedGoogle Scholar
  5. [5]
    Sonntag F, Müller JE, Kiefer P et al. (2015) High-level production of ethylmalonyl-CoA pathway-derived dicarboxylic acids by Methylobacterium extorquens under cobalt-deficient conditions and by polyhydroxybutyrate negative strains. Appl Microbiol Biotechnol 99:3407–3419CrossRefPubMedGoogle Scholar
  6. [6]
    Kiefer P, Buchhaupt M, Christen P et al. (2009) Metabolite Profiling Uncovers Plasmid-Induced Cobalt Limitation under Methylotrophic Growth Conditions. PLoS ONE 4:e7831PubMedCentralCrossRefPubMedGoogle Scholar
  7. [7]
    Sonntag F, Kroner C, Lubuta P et al. (2015) Engineering Methylobacterium extorquens for de novo synthesis of the sesquiterpenoid α-humulene from methanol. Metab Eng, im DruckGoogle Scholar
  8. [8]
    Fernandes ES, Passos GF, Medeiros R et al (2007) Antiinflammatory effects of compounds alpha-humulene and (–)-trans-caryophyllene isolated from the essential oil of Cordia verbenacea. Eur J Pharmacol 569:228–236CrossRefPubMedGoogle Scholar
  9. [9]
    Kaczmarczyk A, Vorholt JA, Francez-Charlot A (2013) Cumate-inducible gene expression system for sphingomonads and other Alphaproteobacteria. Appl Environ Microbiol 79:6795–6802PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.DECHEMA-Forschungsinstitut Biochemical EngineeringFrankfurt A. M.Deutschland

Personalised recommendations