Skip to main content
Log in

Synthetische Nikotinamide in der Biokatalyse

  • Wissenschaft
  • Nikotinamidanaloga
  • Published:
BIOspektrum Aims and scope

Abstract

Natural nicotinamide cofactors (NAD(P)) can in some cases be replaced by simple synthetic analogues (mNADs). These analogues can enable ‘faster than naturally designed’ enzymatic reactions, more efficient reaction processes and more chemoselective reactions because of their bioorthogonality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Paul CE, Arends IWCE, Hollmann F (2014) Is simpler better? Synthetic nicotinamide cofactor analogues for redox chemistry. ACS Catal 4:788–797

    Article  Google Scholar 

  2. Ryan JD, Fish RH, Clark DS (2008) Engineering cytochrome P450 enzymes for improved activity towards biomimetic 1,4-NADH cofactors. Chembiochem 9:2579–2582

    Google Scholar 

  3. Lutz J, Hollmann F, Ho TV et al. (2004) Bioorganometallic chemistry: biocatalytic oxidation reactions with biomimetic NAD+/NADH co-factors and [Cp*Rh(bpy)H]+ for selective organic synthesis. J Organomet Chem 689:4783–4790

    Article  Google Scholar 

  4. Lo HC, Fish RH (2002) Biomimetic NAD+ models for tandem cofactor regeneration, horse liver alcohol dehydrogenase recognition of 1,4-NADH derivatives, and chiral synthesis. Angew Chem Int Ed 41:478–481

    Article  Google Scholar 

  5. Sicsic S, Durand P, Langrene S et al. (1986) A new approach for using cofactor dependent enzymes–example of alcohol-dehydrogenase. Eur J Biochem 155:403–407

    Article  Google Scholar 

  6. Paul CE, Gargiulo S, Opperman DJ et al. (2013) Mimicking nature: synthetic nicotinamide cofactors for C=C bioreduction using enoate reductases. Org Lett 15:180–183

    Article  Google Scholar 

  7. Paul CE, Tischler D, Riedel A et al. (2015) Non-enzymatic regeneration of styrene monooxygenase for catalysis. ACS Catal 5:2961–2965

    Article  Google Scholar 

  8. Paul CE, Churakova E, Maurits E et al. (2014) In situ formation of H2O2 for P450 peroxygenases. Bioorg Med Chem 22:5692–5696

    Article  Google Scholar 

  9. Kohler V, Wilson YM, Durrenberger M et al. (2013) Synthetic cascades are enabled by combining biocatalysts with artificial metalloenzymes. Nat Chem 5:93–99

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Hollmann.

Additional information

Caroline E. Paul Jahrgang 1985. Studium der Biologischen Chemie an der Universität von Toronto, Kanada. 2013 Promotion an der Universität von Oviedo, Spanien. Seit 2013 Marie-Curie-Postdoc in der Arbeitsgruppe von Dr. F. Hollmann an der Technischen Universität Delft, Niederlande.

Frank Hollmann Jahrgang 1973. Chemiestudium an der Universität Bonn. 2004 Promotion an der Eidgenössischen Technischen Hochschule Zürich, Schweiz. 2004–2005 Postdoc am Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr. 2005–2008 Gruppenleiter Biokatalyse bei Evonik, Essen. Seit 2008 Assistant Professor an der Technischen Universität Delft, Niederlande.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hollmann, F., Paul, C.E. Synthetische Nikotinamide in der Biokatalyse. Biospektrum 21, 376–378 (2015). https://doi.org/10.1007/s12268-015-0587-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12268-015-0587-6

Navigation