BIOspektrum

, Volume 21, Issue 2, pp 148–150

Rekonstitution biologischer Selbstorganisation in vitro

Wissenschaft Synthetische Biologie
  • 90 Downloads

Abstract

The Escherichia coli Min proteins select the cell middle for division by oscillating between the cell poles where they inhibit the divisome protein FtsZ. Reconstitution of Min proteins on a lipid membrane in vitro yields their self-organization into surface waves. In biomimetic compartments, pole-to-pole oscillations can be obtained which direct FtsZ to the middle. This establishes bottom-up synthetic biology as a promising approach to reconstitute complex dynamics and spatial cues in vitro.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    Ro DK, Paradise EM, Ouellet M et al. (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940–943CrossRefPubMedGoogle Scholar
  2. [2]
    Adler HI, Fisher WD, Cohen A et al. (1967) Miniature Escherichia coli cells deficient in DNA. Proc Natl Acad Sci USA 57:321–326CrossRefPubMedCentralPubMedGoogle Scholar
  3. [3]
    Hu Z, Lutkenhaus J (1999) Topological regulation of cell division in Escherichia coli involves rapid pole to pole oscillation of the division inhibitor MinC under the control of MinD and MinE. Mol Microbiol 34:82–90CrossRefPubMedGoogle Scholar
  4. [4]
    Lutkenhaus J, Sundaramoorthy M (2003) MinD and role of the deviant Walker A motif, dimerization and membrane binding in oscillation. Mol Microbiol 48:295–303CrossRefPubMedGoogle Scholar
  5. [5]
    Park KT, Wu W, Battaile KP et al. (2011) The Min oscillator uses MinD-dependent conformational changes in MinE to spatially regulate cytokinesis. Cell 146:396–407CrossRefPubMedCentralPubMedGoogle Scholar
  6. [6]
    Loose M, Fischer-Friedrich E, Ries J et al. (2008) Spatial regulators for bacterial cell division self-organize into surface waves in vitro. Science 320:789–792CrossRefPubMedGoogle Scholar
  7. [7]
    Loose M, Fischer-Friedrich E, Herold C et al. (2011) Min protein patterns emerge from rapid rebinding and membrane interaction of MinE. Nat Struct Mol Biol 18:577–583CrossRefPubMedGoogle Scholar
  8. [8]
    Schweizer J, Loose M, Bonny M et al. (2012) Geometry sensing by self-organized protein patterns. Proc Natl Acad Sci USA 109:15283–15288CrossRefPubMedCentralPubMedGoogle Scholar
  9. [9]
    Zieske K, Schwille P (2013) Reconstitution of pole-to-pole oscillations of Min proteins in microengineered polydimethylsiloxane compartments. Angew Chem Int Ed Engl 52:459–462CrossRefPubMedGoogle Scholar
  10. [10]
    Zieske K, Schwille P (2014) Reconstitution of self-organizing protein gradients as spatial cues in cell-free systems. Elife 3, doi: 10.7554/eLife.03949 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department für Zelluläre und Molekulare BiophysikMax-Planck-Institut Für BiochemieMartinsriedDeutschland

Personalised recommendations