, Volume 20, Issue 7, pp 744–746 | Cite as

Antibakterielle Strategien und bakterielle Abwehrmechanismen

  • Sina LangklotzEmail author
  • Julia E. BandowEmail author
Wissenschaft Antibiotikaforschung


In the face of multi-resistant pathogens it is time to find new antibacterial strategies. A system-based approach to studying antibiotic action of natural compounds, antimicrobial peptides, and small molecules allows investigation of clinically unexploited antibiotic classes and targets as well as intrinsic bacterial defence mechanisms. We also investigate the antibacterial activity and mechanisms of action of technical plasmas (ionized gases). They are promising wound disinfectants, which are in clinical development to complement established antibiotic approaches.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Wenzel M, Bandow JE (2011) Proteomic signatures in antibiotic research. Proteomics 11:3256–3268PubMedCrossRefGoogle Scholar
  2. [2]
    Wenzel M, Chiriac AI, Otto A et al. (2014) Small cationic antimicrobial peptides delocalize peripheral membrane proteins. Proc Natl Acad Sci USA 111:E1409–E1418PubMedCentralPubMedCrossRefGoogle Scholar
  3. [3]
    Brötz-Oesterhelt H, Beyer D, Kroll HP et al. (2005) Dysregulation of bacterial proteolytic machinery by a new class of antibiotics. Nat Med 11:1082–1087PubMedCrossRefGoogle Scholar
  4. [4]
    Raatschen N, Wenzel M, Leichert LIO et al. (2013) Extracting iron and manganese from bacteria with ionophores — a mechanism against competitors characterized by increased potency in environments low in micronutrients. Proteomics 13:1358–1370PubMedCrossRefGoogle Scholar
  5. [5]
    Wenzel M, Patra M, Albrecht D et al. (2011) Proteomic signature of fatty acid biosynthesis inhibition available for in vivo mechanism-of-action studies. Antimicrob Agents Chemother 55:2590–2596PubMedCentralPubMedCrossRefGoogle Scholar
  6. [6]
    Wenzel M, Kohl B, Münch D et al. (2012) Proteomic response of Bacillus subtilis to lantibiotics reflects differences in interaction with the cytoplasmic membrane. Antimicrob Agents Chemother 56:5749–5757PubMedCentralPubMedCrossRefGoogle Scholar
  7. [7]
    Münch D, Müller A, Schneider T et al. (2014) The mechanism of action of the lantibiotic NAI-107. J Biol Chem 289:12063–12076PubMedCrossRefGoogle Scholar
  8. [8]
    Mann PA, Müller A, Xiao L et al. (2013) Murgocil is a highly bioactive staphylococcal-specific inhibitor of the peptidoglycan glycosyltransferase enzyme MurG. ACS Chem Biol 8:2442–2451PubMedCrossRefGoogle Scholar
  9. [9]
    Wenzel M, Patra M, Senges CHR et al. (2013) Target identification of potent antibacterial hetero-triorganometallic compounds — a structurally new class of antibiotics. ACS Chem Biol 8:1442–1450PubMedCrossRefGoogle Scholar
  10. [10]
    Ramadoss NS, Alumasa JN, Cheng L et al. (2013) Small molecule inhibitors of trans-translation have broadspectrum antibiotic activity. Proc Natl Acad Sci USA 110:10282–10287PubMedCentralPubMedCrossRefGoogle Scholar
  11. [11]
    Lackmann JW, Bandow JE (2014) Inactivation of microbes and macromolecules by atmospheric-pressure plasma jets. Appl Microbiol Biotechnol 98:6205–6213PubMedCrossRefGoogle Scholar
  12. [12]
    Lackmann JW, Schneider S, Edengeiser E et al. (2013) Photons and particles from atmospheric-pressure plasma inactivate bacteria and biomolecules independently and synergistically. J R Soc Interface 10:20130591PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Angewandte MikrobiologieRuhr-Universität BochumBochumDeutschland

Personalised recommendations