Biotechnologie 2.0 — Impfstoffe und Medikamente auf Basis von mRNA

Abstract

The available vast body of genetic information may be exploited for treatment of disease either by delivery of proteins or the genetic information itself. Any protein can be expressed in vivo from mRNA. Yet, its production process is independent of the encoded protein. mRNA is thus a powerful therapeutic agent more flexible than protein and it is also decisively safer than competing nucleotide-based approaches. Inevitably, mRNA has emerged as a unique basis for molecular therapy.

This is a preview of subscription content, log in to check access.

Literatur

  1. [1]

    Wolff JA, Malone RW, Williams P et al. (1990) Direct gene transfer into mouse muscle in vivo. Science 247:1465–1468

    CAS  PubMed  Article  Google Scholar 

  2. [2]

    Ulmer JB, Mason PW, Geall A et al. (2012) RNA-based vaccines. Vaccine 30:4414–4418

    CAS  PubMed  Article  Google Scholar 

  3. [3]

    Hoerr I, Obst R, Rammensee HG et al. (2000) In vivo application of RNA leads to induction of specific cytotoxic T lymphocytes and antibodies. Eur J Immunol 30:1–7

    CAS  PubMed  Article  Google Scholar 

  4. [4]

    Martinon F, Krishnan S, Lenzen G et al. (1993) Induction of virus-specific cytotoxic T lymphocytes in vivo by liposomeentrapped mRNA. Eur J Immunol 23:1719–1722

    CAS  PubMed  Article  Google Scholar 

  5. [5]

    Kreiter S, Selmi A, Diken M et al. (2010) Intranodal vaccination with naked antigen-encoding RNA elicits potent prophylactic and therapeutic antitumoral immunity. Cancer Res 70:9031–9040

    CAS  PubMed  Article  Google Scholar 

  6. [6]

    Wilgenhof S, Van Nuffel AM, Benteyn D et al. (2013) A phase IB study on intravenous synthetic mRNA electroporated dendritic cell immunotherapy in pretreated advanced melanoma patients. Ann Oncol 24:2686–2693

    CAS  PubMed  Article  Google Scholar 

  7. [7]

    Geall AJ, Verma A, Otten GR (2012) Nonviral delivery of self-amplifying RNA vaccines. Proc Natl Acad Sci USA 109:14604–14609

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  8. [8]

    Fotin-Mleczek M, Duchard KM, Lorenz C et al. (2011) Messenger RNA-based vaccines with dual activity induce balanced TLR-7 dependent adaptive immune responses and provide antitumor activity. J Immunother 34:1–15

    CAS  PubMed  Article  Google Scholar 

  9. [9]

    Petsch B, Schnee M, Vogel AB (2012) Protective efficacy of in vitro synthesized, specific mRNA vaccines against influenza A virus infection. Nat Biotechnol 30:1210–1216

    CAS  PubMed  Article  Google Scholar 

  10. [10]

    Kübler H, Maurer T, Stenzl A et al. (2011) Final analysis of a phase I/IIa study with CV9103, an intradermally administered prostate cancer immunotherapy based on self-adjuvanted mRNA. ASCO Annual Meeting, http://meetinglibrary.asco.org/content/83642-102

    Google Scholar 

  11. [11]

    Karikó K, Muramatsu H, Keller JM et al. (2012) Increased erythropoiesis in mice injected with submicrogram quantities of pseudouridine-containing mRNA encoding erythropoietin. Mol Ther 20:948–953

    PubMed Central  PubMed  Article  Google Scholar 

  12. [12]

    Warren L, Manos PD, Ahfeldt T (2010) Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7:618–630

    CAS  PubMed Central  PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Andreas Thess.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Thess, A., Grund, S. Biotechnologie 2.0 — Impfstoffe und Medikamente auf Basis von mRNA. Biospektrum 20, 577–579 (2014). https://doi.org/10.1007/s12268-014-0483-5

Download citation