Advertisement

BIOspektrum

, Volume 20, Issue 5, pp 570–573 | Cite as

Membranproteinsynthese: Zellfrei geht’s schneller!

  • Rita Sachse
  • Robert B. Quast
  • Andrei Sonnabend
  • Marlitt Stech
  • Stefan KubickEmail author
Open Access
Biotechnologie Zellfreie Proteinproduktion
  • 470 Downloads

Abstract

Difficult to express membrane proteins represent an increasing amount of therapeutic molecules. Considerable optimization is often required for downstream applications such as assay development and functional characterization. Cell-free systems emerged as powerful tools for the synthesis of structurally and functionally divergent membrane proteins. Vesicle-based eukaryotic cell-free systems enable co-translational protein translocation and posttranslational modifications. Hence, these systems provide a multitude of options for membrane protein studies.

Literatur

  1. [1]
    Sachse R, Dondapati SK, Fenz SF et al. (2014) Membrane protein synthesis in cell-free systems: From bio-mimetic systems to bio-membranes. FEBS Lett 588:2774–2781PubMedCrossRefGoogle Scholar
  2. [2]
    Stech M, Brödel AK, Quast RB et al. (2013) Cell-free systems: functional modules for synthetic and chemical biology. Adv Biochem Eng Biotechnol 137:67–102PubMedGoogle Scholar
  3. [3]
    Kubick S, Gerrits M, Merk H et al. (2009) In vitro synthesis of posttranslationally modified membrane proteins, In: DeLucas L (Hrsg) Membrane Protein Crystallization. Current Topics in Membranes, Academic Press, Elsevier, San DiegoGoogle Scholar
  4. [4]
    Shaklee PM, Semrau S, Malkus M et al. (2010) Protein incorporation in giant lipid vesicles under physiological conditions. Chembiochem 11:175–179PubMedCrossRefGoogle Scholar
  5. [5]
    Sachse R, Wüstenhagen D, Šamalíková M et al. (2013) Synthesis of membrane proteins in eukaryotic cell-free systems. Eng Life Sci 13:39–48CrossRefGoogle Scholar
  6. [6]
    Fenz SF, Sachse R, Schmidt T et al. (2014) Cell-free synthesis of membrane proteins: tailored cell models out of microsomes. Biochim Biophys Acta 1838:1382–1388PubMedCrossRefGoogle Scholar
  7. [7]
    Dondapati SK, Kreir M, Quast RB et al. (2014) Membrane assembly of the functional KcsA potassium channel in a vesicle-based eukaryotic cell-free translation system. Biosens Bioelectron 59:174–183PubMedCrossRefGoogle Scholar
  8. [8]
    Stech M, Quast RB, Sachse R et al. (2014) A continuousexchange cell-free protein synthesis system based on extracts from cultured insect cells. PLoS One 9:e96635CrossRefGoogle Scholar
  9. [9]
    Quast RB, Claussnitzer I, Merk H et al. (2014) Synthesis and site-directed fluorescence labeling of azido proteins using eukaryotic cell-free orthogonal translation systems. Anal Biochem 451:4–9PubMedCrossRefGoogle Scholar
  10. [10]
    Stech M, Merk H, Schenk JA et al. (2012) Production of functional antibody fragments in a vesicle-based eukaryotic cell-free translation system. J Biotechnol 164:220–231PubMedCrossRefGoogle Scholar
  11. [11]
    Stech M, Hust M, Schulze C et al. (2014) Cell-free eukaryotic systems for the production, engineering and modification of scFv antibody fragments. Eng Life Sci, doi:  10.1002/elsc.201400036 Google Scholar
  12. [12]
    Orth JH, Schorch B, Boundy S et al. (2011) Cell-free synthesis and characterization of a novel cytotoxic pierisin-like protein from the cabbage butterfly Pieris rapae. Toxicon 57:199–207PubMedCrossRefGoogle Scholar
  13. [13]
    Bechlars S, Wüstenhagen DA, Dragert K et al. (2013) Cellfree synthesis of functional thermostable direct hemolysins of Vibrio parahaemolyticus. Toxicon 76:132–142PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Rita Sachse
    • 1
  • Robert B. Quast
    • 1
  • Andrei Sonnabend
    • 1
  • Marlitt Stech
    • 1
  • Stefan Kubick
    • 1
    Email author
  1. 1.Institutsteil Bioanalytik und Bioprozesse (IZI-BB)Fraunhofer-Institut für Zelltherapie und Immunologie (IZI)Potsdam-GolmDeutschland

Personalised recommendations