, Volume 20, Issue 4, pp 386–389 | Cite as

Bakterien gefangen im Licht

  • Matthias Koch
  • Julian Roth
  • Alexander RohrbachEmail author
Wissenschaft · Methoden 3D-Bewegungsanalyse und Kraftspektroskopie


Bacterial locomotion is often related to pathogenicity and the spread of diseases. Bacteria are able to move under various environmental conditions, and their complex motions are often too fast and minute to be quantitatively imaged with conventional microscopy techniques. The study of their locomotion principles requires new, advanced photonic measurement techniques, capable of extracting forces and energetics exerted by the cell on time scales ranging from milliseconds to a couple of minutes.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Ashkin A, Dziedzic JM, Bjorkholm JE et al. (1986) Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett 11:288–290PubMedCrossRefGoogle Scholar
  2. [2]
    Wang SY, Arellano-Santoyo H, Combs PA et al. (2010) Actin-like cytoskeleton filaments contribute to cell mechanics in bacteria. Proc Natl Acad Sci USA 107:9182–9185PubMedCentralPubMedCrossRefGoogle Scholar
  3. [3]
    Min TL, Mears PJ, Chubiz LM et al. (2009) High-resolution, long-term characterization of bacterial motility using optical tweezers. Nat Methods 6:831–U871PubMedCentralPubMedCrossRefGoogle Scholar
  4. [4]
    Kress H, Stelzer EHK, Holzer D et al. (2007) Filopodia act as phagocytic tentacles and pull with discrete steps and a load-dependent velocity. Proc Natl Acad Sci USA 104:11633–11638PubMedCentralPubMedCrossRefGoogle Scholar
  5. [5]
    Rohrbach A, Tischer C, Neumayer D et al. (2004) Trapping and tracking a local probe with a photonic force microscope. Rev Sci Instrum 75:2197–2210CrossRefGoogle Scholar
  6. [6]
    Whitcomb RF (1981) The biology of spiroplasmas. Annu Rev Entomol 26:397–425CrossRefGoogle Scholar
  7. [7]
    Trachtenberg S, Dorward LM, Speransky VV et al. (2008) Structure of the cytoskeleton of Spiroplasma melliferum BC3 and its interactions with the cell membrane. J Mol Biol 378:778–789PubMedCrossRefGoogle Scholar
  8. [8]
    Koch M, Rohrbach A (2012) Object-adapted optical trapping and shape-tracking of energy-switching helical bacteria. Nat Photonics 6:680–686CrossRefGoogle Scholar
  9. [9]
    Trachtenberg S, Gilad R, Geffen N (2003) The bacterial linear motor of Spiroplasma melliferum BC3: from single molecules to swimming cells. Mol Microbiol 47:671–697PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Matthias Koch
    • 1
  • Julian Roth
    • 1
  • Alexander Rohrbach
    • 1
    • 2
    Email author
  1. 1.Laboratorium für Bio-und Nano-Photonik, Institut für Mikrosystem Technik, ImtekUniversität FreiburgFreiburgGermany
  2. 2.Universität Freiburg Institut für Mikrosystemtechnik — IMTEK Lehrstuhl für Bio- und Nano-PhotonikFreiburgGermany

Personalised recommendations