Advertisement

BIOspektrum

, Volume 20, Issue 4, pp 383–385 | Cite as

Relaxationskinetik in lebenden Zellen

  • Steffen Büning
  • Simon EbbinghausEmail author
Wissenschaft · Methoden Biopolymere
  • 40 Downloads

Abstract

Fast kinetics of biochemical reactions can be measured in vitro using relaxation experiments. Recently, temperature jump techniques have been developed that can also be applied for in-cell studies. The high spatio-temporal resolution of such experiments leads to new insights of how the cellular environment modifies reaction kinetics.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    Verkman A (2002) Solute and macromolecule diffusion in cellular aqueous compartments. Trends Biochem Sci 27:27–33PubMedCrossRefGoogle Scholar
  2. [2]
    Zimmerman S, Trach S (1991) Estimation of macromolecule concentrations and excluded volume effects for the cytoplasm of Escherichia coli. J Mol Biol 222:599–620PubMedCrossRefGoogle Scholar
  3. [3]
    Minton AP (2005) Models for excluded volume interaction between an unfolded protein and rigid macromolecular cosolutes: macromolecular crowding and protein stability revisited. Biophys J 88:971–985PubMedCentralPubMedCrossRefGoogle Scholar
  4. [4]
    Dhar A, Samiotakis A, Ebbinghaus S et al. (2010) Structure, function, and folding of phosphoglycerate kinase are strongly perturbed by macromolecular crowding. Proc Natl Acad Sci USA 107:17586–17591PubMedCentralPubMedCrossRefGoogle Scholar
  5. [5]
    Czerlinski G, Eigen M (1959) Eine Temperatursprungmethode zur Untersuchung chemischer Relaxation. Z Elektrochem 63:652–661Google Scholar
  6. [6]
    Winter R, Noll F, Czeslik C (2011) Methoden der Biophysikalischen Chemie. Vieweg+Teubner Verlag, WiesbadenCrossRefGoogle Scholar
  7. [7]
    Schoen I, Krammer H, Braun D (2009) Hybridization kinetics is different inside cells. Proc Natl Acad Sci USA 106:21649–21654PubMedCentralPubMedCrossRefGoogle Scholar
  8. [8]
    Ebbinghaus S, Dhar A, McDonald D et al. (2010) Protein folding stability and dynamics imaged in a living cell. Nat Methods 7:319–323PubMedCrossRefGoogle Scholar
  9. [9]
    Guo M, Xu Y, Gruebele M (2012) Temperature dependence of protein folding kinetics in living cells. Proc Natl Acad Sci USA 109:17863–17867PubMedCentralPubMedCrossRefGoogle Scholar
  10. [10]
    Dhar A, Girdhar K, Singh D et al. (2011) Protein stability and folding kinetics in the nucleus and endoplasmic reticulum of eucaryotic cells. Biophys J 101:421–430PubMedCentralPubMedCrossRefGoogle Scholar
  11. [11]
    Dhar A, Ebbinghaus S, Shen Z et al. (2010) The diffusion coefficient for PGK folding in eukaryotic cells. Biophys J 99:L69–L71PubMedCentralPubMedCrossRefGoogle Scholar
  12. [12]
    Wirth A, Platkov M, Gruebele M (2013) Temporal variation of a protein folding energy landscape in the cell. J Am Chem Soc 135:19215–19221PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Lehrstuhl für Physikalische Chemie IIRuhr-Universität BochumBochumGermany
  2. 2.Lehrstuhl für Physikalische Chemie II Fakultät für Chemie und BiochemieRuhr-Universität BochumBochumGermany

Personalised recommendations