Skip to main content
Log in

Transkriptom-Sequenzierung in der Alternsforschung

Biologie des Alterns

  • Wissenschaft · Special: Next Generation Sequencing
  • Published:
BIOspektrum Aims and scope


With the advent of next-generation sequencing technologies transcriptome sequencing (RNA-seq) became widely used to study the genetic background of ageing processes and related diseases. We describe the power of this method in the study of two novel age research model organisms, the short-lived killifish Nothobranchius furzeri and the long-lived naked mole rat Heterocephalus glaber. A third example illustrates the utility of RNA-seq in a multispecies approach elucidating the role of mild stress in healthy ageing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. Hartmann N, Reichwald K, Lechel A et al. (2009) Telomeres shorten while Tert expression increases during ageing of the short-lived fish Nothobranchius furzeri. Mech Ageing Dev 130:290–296

    Article  PubMed  CAS  Google Scholar 

  2. Terzibasi E, Valenzano DR, Benedetti M et al. (2008) Large differences in aging phenotype between strains of the short-lived annual fish Nothobranchius furzeri. PLoS One 3:e3866

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  3. Di Cicco E, Tozzini ET, Rossi G et al. (2011) The short-lived annual fish Nothobranchius furzeri shows a typical teleost aging process reinforced by high incidence of age-dependent neoplasias. Exp Gerontol 46:249–256

    Article  PubMed  Google Scholar 

  4. Petzold A, Reichwald K, Groth M et al. (2013) The transcript catalogue of the short-lived fish Nothobranchius furzeri provides insights into age-dependent changes of mRNA levels. BMC Genomics 14:185

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. Buffenstein R (2005) The naked mole-rat: a new long-living model for human aging research. J Gerontol A Biol Sci Med Sci 60:1369–1377

    Article  PubMed  Google Scholar 

  6. Yu C, Li Y, Holmes A et al. (2011) RNA sequencing reveals differential expression of mitochondrial and oxidation reduction genes in the long-lived naked mole-rat when compared to mice. PLoS One 6:e26729

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  7. Kim EB, Fang X, Fushan AA et al. (2011) Genome sequencing reveals insights into physiology and longevity of the naked mole rat. Nature 479:223–227

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. Blacker D, Wilcox MA, Laird NM et al. (1998) Alpha-2 macroglobulin is genetically associated with Alzheimer disease. Nat Genet 19:357–360

    Article  PubMed  CAS  Google Scholar 

  9. Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:298–300

    Article  PubMed  CAS  Google Scholar 

  10. Schulz TJ, Zarse K, Voigt A et al. (2007) Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress. Cell Metab 6:280–293

    Article  PubMed  CAS  Google Scholar 

  11. Kenyon C, Chang J, Gensch E et al. (1993) A C. elegans mutant that lives twice as long as wild type. Nature 366:461–464

    Article  PubMed  CAS  Google Scholar 

  12. Zarse K, Schmeisser S, Groth M et al. (2012) Impaired insulin/IGF1 signaling extends life span by promoting mitochondrial L-proline catabolism to induce a transient ROS signal. Cell Metab 15:451–465

    Article  PubMed  CAS  Google Scholar 

  13. Kirschner J, Weber D, Neuschl C et al. (2012) Mapping of quantitative trait loci controlling lifespan in the short-lived fish Nothobranchius furzeri — a new vertebrate model for age research. Aging Cell 11:252–261

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Stefan Taudien.

Additional information

Matthias Platzer Jahrgang 1954. Medicobiologiestudium am 2. Medizinischen Institut, Moskau. 1985 Promotion, 2006 Habilitation an der Universität Jena im Fach Genetik. Seit 2000 Arbeitsgruppenleiter Genom analyse am Leibniz-Institut für Altersforschung — Fritz-Lipmann-Institut (FLI), Jena.

Stefan Taudien Jahrgang 1958. Chemiestudium an der HU Berlin. 1992 Promotion, 1993–1994 Postdoc am Institut de Chimie Moléculaire, Orsay, Université Paris-Sud. Seit 1995 Wissenschaftler am Institut für Molekulare Biotechnologie, jetzt Fritz-Lipmann-Institut (FLI), Jena.

Karol Szafranski Jahrgang 1970. Biologiestudium an der Universität Düsseldorf. 2002 Promotion, 2002-2004 Postdoc am Institut für Molekulare Biotechnologie, jetzt Fritz-Lipmann-Institut (FLI), Jena; 2004–2005 am Center for Bioinformatics der University of Pennsylvania, Philadelphia, USA. Seit 2005 Wissenschaftler am FLI.

Kathrin Reichwald Jahrgang 1969. Biologiestudium an den Universitäten Jena und Manchester, UK. 2003 Promotion, 2004–2006 Postdoc an der Klinik für Kinder- und Jugendpsychiatrie und Psychotherapie — Rheinische Kliniken Essen. Seit 2006 Projektleiterin am Fritz-Lipmann-Institut (FLI), Jena.

Marco Groth Jahrgang 1978. Biotechnologiestudium an der Fachhochschule Jena (Ernst-Abbe-Fachhochschule). 2008 Promotion an der Universität Leipzig. Seit 2009 Wissenschaftler am Fritz-Lipmann-Institut (FLI), Jena.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Groth, M., Reichwald, K., Szafranski, K. et al. Transkriptom-Sequenzierung in der Alternsforschung. Biospektrum 20, 163–166 (2014).

Download citation

  • Published:

  • Issue Date:

  • DOI: