Skip to main content
Log in

Aromatenreduktion am negativen Ende der biologischen Redoxskala

  • Wissenschaft
  • Mikrobielle Enzymologie
  • Published:
BIOspektrum Aims and scope

Abstract

The degradation of aromatic compounds has long been considered to require dioxygen as co-substrate for oxygenases. However, in anoxic environments anaerobic bacteria employ dearomatizing aromatic ring reductases as key enzymes for the catabolism of aromatic substrates. Surprisingly, there are three totally different biological solutions for the difficult reductive attack on the resonance stabilized aromatic ring system. The dearomatizing reductase classes use FeS-clusters, W-pterins, or flavins as cofactors in their active sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Fuchs G, Boll M, Heider J (2011) Microbial degradation of aromatic compounds — from one strategy to four. Nat Rev Microbiol 9:803–816

    Article  PubMed  CAS  Google Scholar 

  2. Thiele B, Rieder O, Golding BT et al. (2008) Mechanism of enzymatic Birch reduction: stereochemical course and exchange reactions of benzoyl-CoA reductase. J Am Chem Soc 130:14050–14051

    Article  PubMed  CAS  Google Scholar 

  3. Kuntze K, Kiefer P, Baumann S et al. (2011) Enzymes involved in the anaerobic degradation of meta-substituted halobenzoates. Mol Microbiol 82:758–769

    Article  PubMed  CAS  Google Scholar 

  4. Wischgoll S, Heintz D, Peters F et al. (2005) Gene clusters involved in anaerobic benzoate degradation of Geobacter metallireducens. Mol Microbiol 58:1238–1252

    Article  PubMed  CAS  Google Scholar 

  5. Kung JW, Löffler C, Dörner K et al. (2009) Identification and characterization of the tungsten-containing class of benzoylcoenzyme A reductases. Proc Natl Acad Sci USA 106:17687–17692

    Article  PubMed  CAS  Google Scholar 

  6. Kung JW, Baumann S, von Bergen M et al. (2010) Reversible biological Birch reduction at an extremely low redox potential. J Am Chem Soc 132:9850–9856

    Article  PubMed  CAS  Google Scholar 

  7. Löffler C, Kuntze K, Vazquez JR et al. (2011) Occurrence, genes and expression of the W/Se-containing class II benzoylcoenzyme A reductases in anaerobic bacteria. Environ Microbiol 13:696–709

    Article  PubMed  Google Scholar 

  8. Kaster AK, Moll J, Parey K et al. (2010) Coupling of ferredoxin and heterodisulfide reduction via electron bifurcation in hydrogenotrophic methanogenic archaea. Proc Natl Acad Sci USA 108:2981–2986

    Article  Google Scholar 

  9. Buckel W, Thauer RK (2013) Energy conservation via electron bifurcating ferredoxin reduction and proton/Na(+) translocating ferredoxin oxidation. Biochim Biophys Acta 1827:94–113

    Article  PubMed  CAS  Google Scholar 

  10. Meckenstock RU, Mouttaki H (2011) Anaerobic degradation of non-substituted aromatic hydrocarbons. Curr Opin Biotechnol 22:406–414

    Article  PubMed  CAS  Google Scholar 

  11. Eberlein C, Estelmann S, Seifert J et al. (2013) Identification and characterization of 2-naphthoyl-coenzyme A reductase, the prototype of a novel class of dearomatizing reductases. Mol Microbiol 88:1032–1039, doi: 10.1111/mmi.12238

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Boll.

Additional information

Matthias Boll Jahrgang 1965. Biologiestudium an der Universität Freiburg. 1996 Promotion. 1998–1999 Postdoc am John Innes Center in Norwich, UK. 1999–2006 Arbeitsgruppenleiter am Institut für Biologie an der Universität Freiburg. 2002 Habilitation für das Fach Mikrobiologie. 2006–2012 Professor am Institut für Biochemie, Universität Leipzig. Seit 2012 Professor am Institut für Biologie, Universität Freiburg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boll, M. Aromatenreduktion am negativen Ende der biologischen Redoxskala. Biospektrum 19, 485–488 (2013). https://doi.org/10.1007/s12268-013-0341-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12268-013-0341-x

Navigation