Advertisement

BIOspektrum

, Volume 19, Issue 3, pp 243–246 | Cite as

Antibiotika resistenzgene im Ackerboden

Antibiotika in der Landwirtschaft
  • Sven Jechalke
  • Holger Heuer
  • Kornelia Smalla
Wissenschaft

Abstract

Antibiotic substances and resistant bacterial populations are introduced into agricultural soil by manure fertilization. However, the fate and effects of antibiotics in soil are not well understood. Here, we give an overview about effects of agricultural use of antibiotics on soil microbial communities, abundance, and transfer of resistance genes, the role of mobile genetic elements such as plasmids and the potential risks for human health.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    Bundesamt für Verbraucherschutz und Lebensmittelsicherheit (2008) GERMAP2008: Antibiotika-Resistenz und -Verbrauch. Antiinfectives Intelligence GmbH, RheinbachGoogle Scholar
  2. [2]
    Heuer H, Schmitt H, Smalla K (2011) Antibiotic resistance gene spread due to manure application on agricultural fields. Curr Opin Microbiol 14:236–243PubMedCrossRefGoogle Scholar
  3. [3]
    Knapp CW, Dolfing J, Ehlert PAI et al. (2009) Evidence of increasing antibiotic resistance gene abundances in archived soils since 1940. Environ Sci Technol 44:580–587CrossRefGoogle Scholar
  4. [4]
    Sarmah AK, Meyer MT, Boxall ABA (2006) A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 65:725–759PubMedCrossRefGoogle Scholar
  5. [5]
    Perreten V, Boerlin P (2003) A new sulfonamide resistance gene (sul3) in Escherichia coli is widespread in the pig population of Switzerland. Antimicrob Agents Chemother 47:1169–1172PubMedCrossRefGoogle Scholar
  6. [6]
    Jechalke S, Kopmann C, Rosendahl I et al. (2013) Increased abundance and transferability of resistance genes after field application of manure from sulfadiazine-treated pigs. Appl Environ Microbiol 79:1704–1711PubMedCrossRefGoogle Scholar
  7. [7]
    Kopmann C, Jechalke S, Rosendahl I et al. (2013) Abundance and transferability of antibiotic resistance as related to the fate of sulfadiazine in maize rhizosphere and bulk soil. FEMS Microbiol Ecol 83:125–134PubMedCrossRefGoogle Scholar
  8. [8]
    Wellington EMH, Boxall ABA, Cross P et al. (2013) The role of the natural environment in the emergence of antibiotic resistance in Gram-negative bacteria. Lancet Infect Dis 13:155–165PubMedCrossRefGoogle Scholar
  9. [9]
    Heuer H, Binh CTT, Jechalke S et al. (2012) IncP-1ɛ plasmids are important vectors of antibiotic resistance genes in agricultural systems: diversification driven by class 1 integron gene cassettes. Front Microbiol, doi: 10.3389/fmicb.2012.00002Google Scholar
  10. [10]
    Rosendahl I, Siemens J, Groeneweg J et al. (2011) Dissipation and sequestration of the veterinary antibiotic sulfadiazine and its metabolites under field conditions. Environ Sci Technol 45:5216–5222PubMedCrossRefGoogle Scholar
  11. [11]
    Forsberg KJ, Reyes A, Wang B et al. (2012) The shared antibiotic resistome of soil bacteria and human pathogens. Science 337:1107–1111PubMedCrossRefGoogle Scholar
  12. [12]
    Johnsen PJ, Townsend JP, Bøhn T et al. (2009) Factors affecting the reversal of antimicrobial-drug resistance. Lancet Infect Dis 9:357–364PubMedCrossRefGoogle Scholar
  13. [13]
    Heuer H, Solehati Q, Zimmerling U et al. (2011) Accumulation of sulfonamide resistance genes in arable soils due to repeated application of manure containing sulfadiazine. Appl Environ Microbiol 77:2527–2530PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Julius Kühn-Institut — Bundesforschungsinstitut Für Kulturpflanzen (JKI)BraunschweigDeutschland
  2. 2.Julius Kühn-Institut, Bundesforschungsinstitut für KulturpflanzenInstitut für Epidemiologie und PathogendiagnostikBraunschweigDeutschland

Personalised recommendations