Advertisement

BIOspektrum

, Volume 18, Issue 7, pp 717–720 | Cite as

Initiation und Etablierung von Keimblättern im Arabidopsis-Embryo

  • Michaela Matthes
  • Ramon A. Torres-Ruiz
Wissenschaft Keimblattorganogenese bei Pflanzen
  • 71 Downloads

Abstract

Cotyledons are specialised embryonic leaves whose initiation starts when the activities of the Ser/Thr-kinase PID and the NPH3-like protein ENP polarise the auxin transporter PIN1 in epidermal cells of the Arabidopsis embryo apex. The resulting directional auxin flux generates two opposing cell groups with high concentrations of the hormone auxin. These auxin maxima are essential for initiation and maintenance of cotyledons. We describe the interplay of factors participating in this process.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    Sitte P, Weiler EW, Kadereit JW et al. (2002) Strasburger. Lehrbuch der Botanik. Spektrum Akademischer Verlag, Berlin, HeidelbergGoogle Scholar
  2. [2]
    Lau S, Slane D, Herud O et al. (2012) Early embryogenesis in flowering plants: setting up the basic body pattern. Annu Rev Plant Biol 63:483–506PubMedCrossRefGoogle Scholar
  3. [3]
    Torres-Ruiz RA (2004) Polarity in Arabidopsis embryogenesis. In: Lindsey K (Hrsg) Polarity in plants. Annual Plant Reviews 12. Blackwell Publishing, Oxford, S 223–261Google Scholar
  4. [4]
    Gälweiler L, Guan C, Müller A et al. (1998) Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 282:2226–2230PubMedCrossRefGoogle Scholar
  5. [5]
    Benkova E, Michniewicz M, Sauer M et al. (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115:591–602PubMedCrossRefGoogle Scholar
  6. [6]
    Paciorek T, Friml J (2006) Auxin signaling. J Cell Sci 119:1199–1202PubMedCrossRefGoogle Scholar
  7. [7]
    Friml J, Vieten A, Weijers D et al. (2003) Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 426:147–153PubMedCrossRefGoogle Scholar
  8. [8]
    Treml BS, Winderl S, Radykewicz R et al. (2005) The gene ENHACER OF PINOID controls cotyledon development in the Arabidopsis embryo. Development 132:4063–4074PubMedCrossRefGoogle Scholar
  9. [9]
    Benjamins R, Quint A, Weijers D et al. (2001) The PINOID protein kinase regulates organ development in Arabidopsis by enhancing polar auxin transport. Development 128:4057–4067PubMedGoogle Scholar
  10. [10]
    Dhonukshe P, Tanaka H, Goh T et al. (2008) Generation of cell polarity in plants links endocytosis, auxin distribution and cell fate decisions. Nature 456:962–967PubMedCrossRefGoogle Scholar
  11. [11]
    Friml J, Yang X, Michniewicz M et al. (2004) A PINOIDdependent binary switch in apical-basal PIN polar targeting directs auxin efflux. Science 306:862–865PubMedCrossRefGoogle Scholar
  12. [12]
    Geldner N, Anders N, Wolters H et al. (2003) The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport and auxin-dependent plant growth. Cell 112:219–230PubMedCrossRefGoogle Scholar
  13. [13]
    Michniewicz M, Zago MK, Abas L et al. (2007) Antagonistic regulation of PIN phosphorylation by PP2A and PINOID directs auxin flux. Cell 130:1044–1056PubMedCrossRefGoogle Scholar
  14. [14]
    Furutani M, Kajiwara T, Kato T et al. (2007) The gene MACCHI-BOU4/ENHANCER OF PINOID encodes a NPH3-like protein and reveals similarities between organogenesis and phototropism on the molecular level. Development 134:3849–3859PubMedCrossRefGoogle Scholar
  15. [15]
    Treml BS (2008) Dissertation, TU MünchenGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Lehrstuhl für GenetikTU MünchenMünchenGermany
  2. 2.Lehrstuhl für GenetikTechnische Universität MünchenFreisingGermany

Personalised recommendations