Skip to main content
Log in

Mikrobielle Ökologie des Roten Meeres

  • Wissenschaft
  • Marine Mikrobiologie
  • Published:
BIOspektrum Aims and scope

Abstract

The Red Sea is an unusually harsh marine environment, characterized by high temperature and salinity. It also harbors some of the most extreme environments on earth, the Deep Sea Brine Pools. Here, we report on the microbial communities in these environments. The water column is dominated by SAR11 and Prochlorococcus, which have developed specific adaptations to withstand the conditions. The Brine Pools have only been poorly characterized so far, and only four pure cultures are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Ngugi DK, Antunes A, Brune A et al. (2012) Biogeography of pelagic bacterioplankton across an antagonistic temperature-salinity gradient in the Red Sea. Mol Ecol 21:388–405

    Article  PubMed  CAS  Google Scholar 

  2. Morris RM, Rappé MS, Connon SA et al. (2002) SAR11 clade dominates ocean surface bacterioplankton communities. Nature 420:806–810

    Article  PubMed  CAS  Google Scholar 

  3. Rappé MS, Connon SA, Vergin KL et al. (2002) Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature 418:630–633

    Article  PubMed  Google Scholar 

  4. Giovannoni SJ, Tripp HJ, Givan S et al. (2005) Genome streamlining in a cosmopolitan oceanic bacterium. Science 309:1242–1245

    Article  PubMed  CAS  Google Scholar 

  5. Antunes A, Ngugi DK, Stingl U (2011) Microbiology of the Red Sea (and other) deep-sea anoxic brine lakes. Environ Microbiol Rep 3:416–433

    Article  Google Scholar 

  6. Bertram C, Krätschell A, OO’Brien KK et al. (2011) Metalliferous sediments in the Atlantis II Deep — assessing the geological and economic resource potential and legal constraints. Resour Policy 36:315–329

    Article  Google Scholar 

  7. Wang Y, Yang J, Lee OO et al. (2011) Hydrothermally generated aromatic compounds are consumed by bacteria colonizing in Atlantis II Deep of the Red Sea. ISME J 5:1652–1659

    Article  PubMed  CAS  Google Scholar 

  8. Eder W, Schmidt M, Koch M et al. (2002) Prokaryotic phylogenetic diversity and corresponding geochemical data of the brine-seawater interface of the Shaban Deep, Red Sea. Environ Microbiol 4:758–763

    Article  PubMed  CAS  Google Scholar 

  9. Eder W, Jahnke LL, Schmidt M et al. (2001) Microbial diversity of the brine-seawater interface of the Kebrit Deep, Red Sea, studied via 16S rRNA gene sequences and cultivation methods. Appl Environ Microbiol 67:3077–3085

    Article  PubMed  CAS  Google Scholar 

  10. Antunes A, Alam I, El Dorry H et al. (2011) Genome sequence of Haloplasma contractile, an unusual contractile bacterium from a deep-sea anoxic brine lake. J Bacteriol 193:4551–4552

    Article  PubMed  CAS  Google Scholar 

  11. Antunes A, Alam I, Bajic VB et al. (2011) Genome sequence of Halorhabdus tiamatea, the first archaeon isolated from a deep-sea anoxic brine lake. J Bacteriol 193:4553–4554

    Article  PubMed  CAS  Google Scholar 

  12. Antunes A, Alam I, Bajic VB et al. (2011) Genome sequence of Salinisphaera shabanensis, a gammaproteobacterium from the harsh, variable environment of the brine-seawater interface of the Shaban Deep in the Red Sea. J Bacteriol 193:4555–4556

    Article  PubMed  CAS  Google Scholar 

  13. Antunes A, Rainey FA, Wanner G et al. (2008) A new lineage of halophilic, wall-less, contractile bacteria from a brine-filled deep of the Red Sea. J Bacteriol 190:3580–3587

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uli Stingl.

Additional information

Luke Thompson, Matthew Cahill, David K. Ngugi, Uli Stingl und Andre Antunes (v. l. n. r).

Prof. Dr. Uli Stingl studierte an den Universitäten Karlsruhe und Konstanz, wo er 2005 promovierte. Danach arbeitete er als Postdoktorand am Max-Planck-Institut für Terrestrische Mikrobiologie, Marburg, und als DFG-Stipendiat an der Oregon State University, Corvallis, USA. Bevor er sich KAUST anschloss, war Stingl als Senior Scientist bei der Biotechfirma Synthetic Genomics in La Jolla, CA, USA, beschäftigt. Seit 2009 ist er Assistant Professor für Meereswissenschaften an der King Abdullah University of Science and Technology (KAUST) in Saudi-Arabien. Dr. Luke Thompson, Dr. Matthew Cahill, Dr. David Kamanda Ngugi und Dr. Andre Antunes sind Postdoktoranden in der Arbeitsgruppe Marine Microbial Ecology von U. Stingl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stingl, U., Ngugi, D.K., Thompson, L. et al. Mikrobielle Ökologie des Roten Meeres. Biospektrum 18, 582–584 (2012). https://doi.org/10.1007/s12268-012-0231-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12268-012-0231-7

Navigation