Skip to main content
Log in

Echtzeiteinblicke in biologische Prozesse

  • Biotechnologie
  • Nano- und Megakalorimetrie
  • Published:
BIOspektrum Aims and scope

Abstract

Biocalorimetry measures the metabolically released heat. Heat is directly correlated with the metabolic fluxes and reflects their changes in real time. Today, it is measureable non-invasively with an extreme sensitivity. Insofar, calorimetry provides the basics for an ideal sensor for biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. von Stockar U (2010) Biothermodynamics of live cells: a tool for biotechnology and biochemical engineering. J Non-Equilib Thermodyn 35:415–475

    Article  Google Scholar 

  2. von Stockar U, Marison IW (1991) Large-scale calorimetry and biotechnology. Thermochim Acta 193:215–242

    Article  Google Scholar 

  3. Schubert T, Breuer U, Harms H et al. (2007) Calorimetric bioprocess monizoring by small modifications to a standard bench-scale bioreactor. J Biotechnol 130:24–31

    Article  PubMed  CAS  Google Scholar 

  4. Turker M (2004) Development of biocalorimetry as a technique for process monitoring and control in technical scale fermentations. Thermochim Acta 419:73–81

    Article  Google Scholar 

  5. Buchholz F, Wick LY, Harms H et al. (2007) The kinetics of polycyclic aromatic hydrocarbon (PAH) biodegradation assessed by isothermal titration calorimetry (ITC). Thermochim Acta 458:47–53

    Article  CAS  Google Scholar 

  6. Mariana F, Buchholz F, Harms H et al. (2010) Isothermal titration calorimetry — a new method for the quantification of microbial degradation of trace pollutants. J Microbiol Methods 82:42–48

    Article  PubMed  CAS  Google Scholar 

  7. Lerchner J, Buchholz F, Wolf A et al. (2008) Miniaturized calorimetry — a new method for real-time biofilm activity analysis. J Microbiol Methods 74:74–81

    Article  PubMed  CAS  Google Scholar 

  8. Oroszi S, Jakob T, Wilhelm C et al. (2011) Photosynthetic energy conversion in the diatom Phaeodactylum tricornutum. J Therm Anal Calorim 104:223–231

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Maskow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maskow, T. Echtzeiteinblicke in biologische Prozesse. Biospektrum 18, 100–101 (2012). https://doi.org/10.1007/s12268-012-0147-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12268-012-0147-2

Navigation