Skip to main content
Log in

Protein Engineering mit nicht-kanonischen Aminosäuren

  • Biotechnologie
  • Synthetische Proteine
  • Published:
BIOspektrum Aims and scope

Abstract

Non-canonical amino acids as building blocks for protein biosynthesis facilitate modifications that go far beyond classical genetic engineering. Two complementary techniques allow either site-specific or residue-specific incorporation. Accordingly, the possible modifications range from atomic changes to the alteration of the overall biophysical characteristics of a protein. In this article, we present the state of the art of this new protein engineering approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Bogosian G, Violand BN, Dorward-King EJ et al. (1989) Biosynthesis and incorporation into protein of norleucine by Escherichia coli. J Biol Chem 254:531–539

    Google Scholar 

  2. Aoyagi Y, Sugahara T (1985) 2(S)-Aminohex-5-ynoic acid, an antimetabolite from Cortinarius claricolor var. Tenuipes. Phytochemistry 24:1835–1836

    Article  CAS  Google Scholar 

  3. Ma SJ (2003) Unnatural amino acids in drug discovery. Chim Oggi 21:65–68

    CAS  Google Scholar 

  4. Bansal M, Ananthanarayanan VS (1988) The role of hydroxyproline in collagen folding: Conformational energy calculations on oligopeptides containing proline and hydroxyproline. Biopolymers 27:299–312

    Article  PubMed  CAS  Google Scholar 

  5. Johnson JA, Lu YY, van Deventer JA et al. (2010) Residuespecific incorporation of non-canonical amino acids into proteins: recent developments and applications. Curr Opin Chem Biol 14:774–780

    Article  PubMed  CAS  Google Scholar 

  6. Furter R (1998) Expansion of the genetic code: Site-directed p-fluoro-phenylalanine incorporation in Escherichia coli. Protein Sci 7:419–426

    Article  PubMed  CAS  Google Scholar 

  7. Young TS, Schultz PG (2010) Beyond the canonical 20 amino acids: Expanding the genetic lexicon. J Biol Chem 285:11039–11044

    Article  PubMed  CAS  Google Scholar 

  8. Mukai T, Yanagisawa T, Ohtake K et al. (2011) Geneticcode evolution for protein synthesis with non-natural amino acids. Biochem Biophys Res Commun 411:757–761

    Article  PubMed  CAS  Google Scholar 

  9. Johnson DBF, Xu J, Shen Z et al. (2011) RF1 knockout allows ribosomal incorporation of unnatural amino acids at multiple sites. Nat Chem Biol 7:779–786

    Article  PubMed  CAS  Google Scholar 

  10. Neumann H, Wang K, Davis L et al. (2010) Encoding multiple unnatural amino acids via evolution of a quadrupletdecoding ribosome. Nature 464:441–444

    Article  PubMed  CAS  Google Scholar 

  11. Chen H, Warfield L, Hahn S (2007) The positions of TFIIF and TFIIE in the RNA polymerase II transcription preinitiation complex. Nat Struct Mol Biol 14:696–703

    Article  PubMed  CAS  Google Scholar 

  12. Service RF (2005) American Chemical Society Meeting: Unnatural amino acid could prove boon for protein therapeutics. Science 308:44

    CAS  Google Scholar 

  13. Mehl RA, Anderson JC, Santoro SW et al. (2003) Generation of a Bacterium with a 21 Amino Acid Genetic Code. J Am Chem Soc 125:935–939

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birgit Wiltschi.

Additional information

Natascha Hotz, Tanja Marzluf und Birgit Wiltschi (v. l. n. r.)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hotz, N., Marzluf, T. & Wiltschi, B. Protein Engineering mit nicht-kanonischen Aminosäuren. Biospektrum 18, 96–99 (2012). https://doi.org/10.1007/s12268-012-0146-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12268-012-0146-3

Navigation