Skip to main content
Log in

The Gut Microbiome Affects Atherosclerosis by Regulating Reverse Cholesterol Transport

  • Review
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

The human system’s secret organ, the gut microbiome, has received considerable attention. Emerging research has yielded substantial scientific evidence indicating that changes in gut microbial composition and microbial metabolites may contribute to the development of atherosclerotic cardiovascular disease. The burden of cardiovascular disease on healthcare systems is exacerbated by atherosclerotic cardiovascular disease, which continues to be the leading cause of mortality globally. Reverse cholesterol transport is a powerful protective mechanism that effectively prevents excessive accumulation of cholesterol for atherosclerotic cardiovascular disease. It has been revealed how the gut microbiota modulates reverse cholesterol transport in patients with atherosclerotic risk. In this review, we highlight the complex interactions between microbes, their metabolites, and their potential impacts in reverse cholesterol transport. We also explore the feasibility of modulating gut microbes and metabolites to facilitate reverse cholesterol transport as a novel therapy for atherosclerosis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

RCT :

Reverse cholesterol transport

BA :

Bile acid

TMAO :

Trimethylamine-N-oxide

SCFA :

Short-chain fatty acid

ASCVD :

Atherosclerotic cardiovascular disease

TC :

Total cholesterol

LDL-C :

Low-density lipoprotein-cholesterol

HDL :

High-density lipoprotein

LCAT :

Lecithin cholesterol acyltransferase

FCh :

Free cholesterol

ApoA-I :

Apolipoprotein A-I

ABCA1 :

ATP-binding cassette transporter A 1

ABCG1 :

ATP-binding cassette transporter G 1

ABCG4 :

ATP-binding cassette transporter G 4

CE :

Cholesteryl ester

CETP :

Cholesteryl ester transfer protein

PLTP :

Phospholipid transfer protein

HDL-C :

HDL-cholesterol

SR-BI :

Scavenger-receptor class B type I

LDL :

Low-density lipoprotein

VLDL :

Very low-density lipoprotein

ABCG5 :

ATP-binding cassette transporter G 5

ABCG8 :

ATP-binding cassette transporter G 8

TICE :

Transintestinal cholesterol excretion

ACAT2 :

Cholesterol acyltransferase 2

LDLR :

Low-density lipoprotein receptor

NPC1L1 :

Niemann-Pick C1-like 1

TMA :

Trimethylamine

FMO3 :

Flavin monooxygenase 3

DMB :

3,3-Dimethyl-1-butanol

HFD :

High-fat diet

MCE :

Macrophage cholesterol efflux

CAD :

Coronary artery disease

TLR5 :

Toll-like receptor 5

LXRα/β :

Liver X receptorsα/β

CD36 :

Cluster determinant 36

FXR :

Farnesoid X receptor

CYP7A1 :

Cytochrome P450 family 7 subfamily A member 1

CYP27A1 :

Cytochrome P450 family 27 subfamily A member 1

IPA :

Indole-3-propionic acid

KetoA :

10-Oxo-12 (Z)-octadecenoic acid

KetoC :

10-Oxo-11 (E)-octadecenoic acid

BSH :

Bile salt hydrolase

APE :

Apple polyphenol extract

GRc :

Ginsenoside Rc

PCSK9 :

Proprotein convertase subtilisin/kexin type 9

IDOL :

Inducible degrader of low-density lipoprotein receptor

References

  1. Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R. Bacterial community variation in human body habitats across space and time. Science (New York, NY). 2009;326(5960):1694–7. https://doi.org/10.1126/science.1177486.

    Article  CAS  Google Scholar 

  2. Berg G, Rybakova D, Fischer D, Cernava T, Vergès MC, Charles T, et al. Microbiome definition re-visited: old concepts and new challenges. Microbiome. 2020;8(1):103. https://doi.org/10.1186/s40168-020-00875-0.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mishra AK, Dubey V, Ghosh AR. Obesity: an overview of possible role(s) of gut hormones, lipid sensing and gut microbiota. Metabolism: Clin Exp. 2016;65(1):48–65. https://doi.org/10.1016/j.metabol.2015.10.008.

    Article  CAS  Google Scholar 

  4. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, et al. Diversity of the human intestinal microbial flora. Science (New York, NY). 2005;308(5728):1635–8. https://doi.org/10.1126/science.1110591.

    Article  Google Scholar 

  5. Tang WH, Hazen SL. The gut microbiome and its role in cardiovascular diseases. Circulation. 2017;135(11):1008–10. https://doi.org/10.1161/CIRCULATIONAHA.116.024251.

    Article  PubMed  Google Scholar 

  6. Mistry RH, Verkade HJ, Tietge UJ. Reverse cholesterol transport is increased in germ-free mice-brief report. Arterioscler Thromb Vasc Biol. 2017;37(3):419–22. https://doi.org/10.1161/ATVBAHA.116.308306.

    Article  CAS  PubMed  Google Scholar 

  7. Haraszthy VI, Zambon JJ, Trevisan M, Zeid M, Genco RJ. Identification of periodontal pathogens in atheromatous plaques. J Periodontol. 2000;71(10):1554–60. https://doi.org/10.1902/jop.2000.71.10.1554.

    Article  CAS  PubMed  Google Scholar 

  8. Emoto T, Yamashita T, Sasaki N, Hirota Y, Hayashi T, So A, et al. Analysis of gut microbiota in coronary artery disease patients: a possible link between gut microbiota and coronary artery disease. J Atheroscler Thromb. 2016;23(8):908–21. https://doi.org/10.5551/jat.32672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gózd-Barszczewska A, Kozioł-Montewka M, Barszczewski P, Młodzińska A, Humińska K. Gut microbiome as a biomarker of cardiometabolic disorders. Ann Agric Environ Med : AAEM. 2017;24(3):416–22. https://doi.org/10.26444/aaem/75456.

    Article  CAS  PubMed  Google Scholar 

  10. Jie Z, Xia H, Zhong SL, Feng Q, Li S, Liang S, et al. The gut microbiome in atherosclerotic cardiovascular disease. Nat Commun. 2017;8(1):845. https://doi.org/10.1038/s41467-017-00900-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Granado-Serrano AB, Martin-Gari M, Sanchez V, Riart Solans M, Berdun R, Ludwig IA, et al. Faecal bacterial and short-chain fatty acids signature in hypercholesterolemia. Sci Rep. 2019;9(1):1772. https://doi.org/10.1038/s41598-019-38874-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gofman JW, Young W, Tandy R. Ischemic heart disease, atherosclerosis, and longevity. Circulation. 1966;34(4):679–97. https://doi.org/10.1161/01.cir.34.4.679.

    Article  CAS  PubMed  Google Scholar 

  13. Glomset JA. The plasma lecithins:cholesterol acyltransferase reaction. J Lipid Res. 1968;9(2):155–67.

    Article  CAS  PubMed  Google Scholar 

  14. Rosenson RS, Brewer HB Jr, Davidson WS, Fayad ZA, Fuster V, Goldstein J, et al. Cholesterol efflux and atheroprotection: advancing the concept of reverse cholesterol transport. Circulation. 2012;125(15):1905–19. https://doi.org/10.1161/circulationaha.111.066589.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Rader DJ, Alexander ET, Weibel GL, Billheimer J, Rothblat GH. The role of reverse cholesterol transport in animals and humans and relationship to atherosclerosis. J Lipid Res. 2009;50 Suppl(Suppl):S189–94. https://doi.org/10.1194/jlr.R800088-JLR200.

  16. Shah AS, Tan L, Long JL, Davidson WS. Proteomic diversity of high density lipoproteins: our emerging understanding of its importance in lipid transport and beyond. J Lipid Res. 2013;54(10):2575–85. https://doi.org/10.1194/jlr.R035725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bojanovski D, Gregg RE, Ghiselli G, Schaefer EJ, Light JA, Brewer HB Jr. Human apolipoprotein A-I isoprotein metabolism: proapoA-I conversion to mature apoA-I. J Lipid Res. 1985;26(2):185–93.

    Article  CAS  PubMed  Google Scholar 

  18. Allen PC. The effect of Eimeria acervulina infection on plasma lipids and lipoproteins in young broiler chicks. Vet Parasitol. 1988;30(1):17–30. https://doi.org/10.1016/0304-4017(88)90139-2.

    Article  CAS  PubMed  Google Scholar 

  19. Pownall HJ, Rosales C, Gillard BK, Gotto AM Jr. High-density lipoproteins, reverse cholesterol transport and atherogenesis. Nat Rev Cardiol. 2021;18(10):712–23. https://doi.org/10.1038/s41569-021-00538-z.

    Article  CAS  PubMed  Google Scholar 

  20. Rye KA, Hime NJ, Barter PJ. Evidence that cholesteryl ester transfer protein-mediated reductions in reconstituted high density lipoprotein size involve particle fusion. J Biol Chem. 1997;272(7):3953–60. https://doi.org/10.1074/jbc.272.7.3953.

    Article  CAS  PubMed  Google Scholar 

  21. Settasatian N, Duong M, Curtiss LK, Ehnholm C, Jauhiainen M, Huuskonen J, et al. The mechanism of the remodeling of high density lipoproteins by phospholipid transfer protein. J Biol Chem. 2001;276(29):26898–905. https://doi.org/10.1074/jbc.M010708200.

    Article  CAS  PubMed  Google Scholar 

  22. Lie J, de Crom R, Jauhiainen M, van Gent T, van Haperen R, Scheek L, et al. Evaluation of phospholipid transfer protein and cholesteryl ester transfer protein as contributors to the generation of pre beta-high-density lipoproteins. Biochem J. 2001;360(Pt 2):379–85. https://doi.org/10.1042/0264-6021:3600379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bruce C, Sharp DS, Tall AR. Relationship of HDL and coronary heart disease to a common amino acid polymorphism in the cholesteryl ester transfer protein in men with and without hypertriglyceridemia. J Lipid Res. 1998;39(5):1071–8.

    Article  CAS  PubMed  Google Scholar 

  24. Kuwano T, Bi X, Cipollari E, Yasuda T, Lagor WR, Szapary HJ, et al. Overexpression and deletion of phospholipid transfer protein reduce HDL mass and cholesterol efflux capacity but not macrophage reverse cholesterol transport. J Lipid Res. 2017;58(4):731–41. https://doi.org/10.1194/jlr.M074625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rao R, Albers JJ, Wolfbauer G, Pownall HJ. Molecular and macromolecular specificity of human plasma phospholipid transfer protein. Biochemistry. 1997;36(12):3645–53. https://doi.org/10.1021/bi962776b.

    Article  CAS  PubMed  Google Scholar 

  26. Lusa S, Jauhiainen M, Metso J, Somerharju P, Ehnholm C. The mechanism of human plasma phospholipid transfer protein-induced enlargement of high-density lipoprotein particles: evidence for particle fusion. The Biochemical journal. 1996;313( Pt 1)(Pt 1):275–82. https://doi.org/10.1042/bj3130275.

  27. Williams DL, Connelly MA, Temel RE, Swarnakar S, Phillips MC, de la Llera-Moya M, et al. Scavenger receptor BI and cholesterol trafficking. Curr Opin Lipidol. 1999;10(4):329–39. https://doi.org/10.1097/00041433-199908000-00007.

    Article  CAS  PubMed  Google Scholar 

  28. Acton S, Rigotti A, Landschulz KT, Xu S, Hobbs HH, Krieger M. Identification of scavenger receptor SR-BI as a high density lipoprotein receptor. Science (New York, NY). 1996;271(5248):518–20. https://doi.org/10.1126/science.271.5248.518.

    Article  CAS  Google Scholar 

  29. Mehta A, Shapiro MD. Apolipoproteins in vascular biology and atherosclerotic disease. Nat Rev Cardiol. 2022;19(3):168–79. https://doi.org/10.1038/s41569-021-00613-5.

    Article  CAS  PubMed  Google Scholar 

  30. Ouimet M, Barrett TJ, Fisher EA. HDL and reverse cholesterol transport. Circ Res. 2019;124(10):1505–18. https://doi.org/10.1161/CIRCRESAHA.119.312617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kriaa A, Bourgin M, Potiron A, Mkaouar H, Jablaoui A, Gérard P, et al. Microbial impact on cholesterol and bile acid metabolism: current status and future prospects. J Lipid Res. 2019;60(2):323–32. https://doi.org/10.1194/jlr.R088989.

    Article  CAS  PubMed  Google Scholar 

  32. Busnelli M, Manzini S, Chiesa G. The gut microbiota affects host pathophysiology as an endocrine organ: a focus on cardiovascular disease. Nutrients. 2019;12(1). https://doi.org/10.3390/nu12010079.

  33. Temel RE, Brown JM. Biliary and nonbiliary contributions to reverse cholesterol transport. Curr Opin Lipidol. 2012;23(2):85–90. https://doi.org/10.1097/MOL.0b013e3283508c21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vrins CL. From blood to gut: direct secretion of cholesterol via transintestinal cholesterol efflux. World J Gastroenterol. 2010;16(47):5953–7. https://doi.org/10.3748/wjg.v16.i47.5953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lee RG, Kelley KL, Sawyer JK, Farese RV Jr, Parks JS, Rudel LL. Plasma cholesteryl esters provided by lecithin:cholesterol acyltransferase and acyl-coenzyme a:cholesterol acyltransferase 2 have opposite atherosclerotic potential. Circ Res. 2004;95(10):998–1004. https://doi.org/10.1161/01.Res.0000147558.15554.67.

    Article  CAS  PubMed  Google Scholar 

  36. Temel RE, Hou L, Rudel LL, Shelness GS. ACAT2 stimulates cholesteryl ester secretion in apoB-containing lipoproteins. J Lipid Res. 2007;48(7):1618–27. https://doi.org/10.1194/jlr.M700109-JLR200.

    Article  CAS  PubMed  Google Scholar 

  37. Brown JM, Bell TA 3rd, Alger HM, Sawyer JK, Smith TL, Kelley K, et al. Targeted depletion of hepatic ACAT2-driven cholesterol esterification reveals a non-biliary route for fecal neutral sterol loss. J Biol Chem. 2008;283(16):10522–34. https://doi.org/10.1074/jbc.M707659200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Marshall SM, Gromovsky AD, Kelley KL, Davis MA, Wilson MD, Lee RG, et al. Acute sterol o-acyltransferase 2 (SOAT2) knockdown rapidly mobilizes hepatic cholesterol for fecal excretion. PLoS ONE. 2014;9(6):e98953. https://doi.org/10.1371/journal.pone.0098953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Temel RE, Brown JM. A new model of reverse cholesterol transport: enTICEing strategies to stimulate intestinal cholesterol excretion. Trends Pharmacol Sci. 2015;36(7):440–51. https://doi.org/10.1016/j.tips.2015.04.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Paalvast Y, de Boer JF, Groen AK. Developments in intestinal cholesterol transport and triglyceride absorption. Curr Opin Lipidol. 2017;28(3):248–54. https://doi.org/10.1097/mol.0000000000000415.

    Article  CAS  PubMed  Google Scholar 

  41. Xiao X, Kennelly JP, Ferrari A, Clifford BL, Whang E, Gao Y, et al. Hepatic nonvesicular cholesterol transport is critical for systemic lipid homeostasis. Nat Metab. 2023;5(1):165–81. https://doi.org/10.1038/s42255-022-00722-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ferrari A, Whang E, Xiao X, Kennelly JP, Romartinez-Alonso B, Mack JJ, et al. Aster-dependent non-vesicular transport facilitates dietary cholesterol uptake. BioRxiv : The Preprint Server for Biology. 2023. https://doi.org/10.1101/2023.07.07.548168.

  43. Mestdagh R, Dumas ME, Rezzi S, Kochhar S, Holmes E, Claus SP, et al. Gut microbiota modulate the metabolism of brown adipose tissue in mice. J Proteome Res. 2012;11(2):620–30. https://doi.org/10.1021/pr200938v.

    Article  CAS  PubMed  Google Scholar 

  44. Velagapudi VR, Hezaveh R, Reigstad CS, Gopalacharyulu P, Yetukuri L, Islam S, et al. The gut microbiota modulates host energy and lipid metabolism in mice. J Lipid Res. 2010;51(5):1101–12. https://doi.org/10.1194/jlr.M002774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zdrojewski T, Jankowski P, Bandosz P, Bartuś S, Chwojnicki K, Drygas W, et al. A new version of cardiovascular risk assessment system and risk charts calibrated for Polish population. Kardiol Pol. 2015;73(10):958–61. https://doi.org/10.5603/kp.2015.0182.

    Article  PubMed  Google Scholar 

  46. Zeng Q, Li D, He Y, Li Y, Yang Z, Zhao X, et al. Discrepant gut microbiota markers for the classification of obesity-related metabolic abnormalities. Sci Rep. 2019;9(1):13424. https://doi.org/10.1038/s41598-019-49462-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Meng Q, Ma M, Zhang W, Bi Y, Cheng P, Yu X, et al. The gut microbiota during the progression of atherosclerosis in the perimenopausal period shows specific compositional changes and significant correlations with circulating lipid metabolites. Gut Microbes. 2021;13(1):1–27. https://doi.org/10.1080/19490976.2021.1880220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chi L, Lai Y, Tu P, Liu CW, Xue J, Ru H, et al. Lipid and cholesterol homeostasis after arsenic exposure and antibiotic treatment in mice: potential role of the microbiota. Environ Health Perspect. 2019;127(9):97002. https://doi.org/10.1289/ehp4415.

    Article  CAS  PubMed  Google Scholar 

  49. Chaudhari SN, McCurry MD, Devlin AS. Chains of evidence from correlations to causal molecules in microbiome-linked diseases. Nat Chem Biol. 2021;17(10):1046–56. https://doi.org/10.1038/s41589-021-00861-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472(7341):57–63. https://doi.org/10.1038/nature09922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tang WH, Wang Z, Levison BS, Koeth RA, Britt EB, Fu X, et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med. 2013;368(17):1575–84. https://doi.org/10.1056/NEJMoa1109400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013;19(5):576–85. https://doi.org/10.1038/nm.3145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang Z, Roberts AB, Buffa JA, Levison BS, Zhu W, Org E, et al. Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell. 2015;163(7):1585–95. https://doi.org/10.1016/j.cell.2015.11.055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Du Y, Li X, Su C, Xi M, Zhang X, Jiang Z, et al. Butyrate protects against high-fat diet-induced atherosclerosis via up-regulating ABCA1 expression in apolipoprotein E-deficiency mice. Br J Pharmacol. 2020;177(8):1754–72. https://doi.org/10.1111/bph.14933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Annema W, Tietge UJ. Regulation of reverse cholesterol transport - a comprehensive appraisal of available animal studies. Nutr Metab. 2012;9(1):25. https://doi.org/10.1186/1743-7075-9-25.

    Article  CAS  Google Scholar 

  56. Khera AV, Cuchel M, de la Llera-Moya M, Rodrigues A, Burke MF, Jafri K, et al. Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N Engl J Med. 2011;364(2):127–35. https://doi.org/10.1056/NEJMoa1001689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rohatgi A, Khera A, Berry JD, Givens EG, Ayers CR, Wedin KE, et al. HDL cholesterol efflux capacity and incident cardiovascular events. N Engl J Med. 2014;371(25):2383–93. https://doi.org/10.1056/NEJMoa1409065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Li XM, Tang WH, Mosior MK, Huang Y, Wu Y, Matter W, et al. Paradoxical association of enhanced cholesterol efflux with increased incident cardiovascular risks. Arterioscler Thromb Vasc Biol. 2013;33(7):1696–705. https://doi.org/10.1161/atvbaha.113.301373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mutharasan RK, Thaxton CS, Berry J, Daviglus ML, Yuan C, Sun J, et al. HDL efflux capacity, HDL particle size, and high-risk carotid atherosclerosis in a cohort of asymptomatic older adults: the Chicago Healthy Aging Study. J Lipid Res. 2017;58(3):600–6. https://doi.org/10.1194/jlr.P069039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Nicholls SJ, Andrews J, Kastelein JJP, Merkely B, Nissen SE, Ray KK, et al. Effect of serial infusions of CER-001, a pre-β high-density lipoprotein mimetic, on coronary atherosclerosis in patients following acute coronary syndromes in the CER-001 atherosclerosis regression acute coronary syndrome trial: a randomized clinical trial. JAMA Cardiol. 2018;3(9):815–22. https://doi.org/10.1001/jamacardio.2018.2121.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Nicholls SJ, Puri R, Ballantyne CM, Jukema JW, Kastelein JJP, Koenig W, et al. Effect of infusion of high-density lipoprotein mimetic containing recombinant apolipoprotein A-I Milano on coronary disease in patients with an acute coronary syndrome in the Milano-pilot trial: a randomized clinical trial. JAMA Cardiol. 2018;3(9):806–14. https://doi.org/10.1001/jamacardio.2018.2112.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Rhainds D, Tardif JC. From HDL-cholesterol to HDL-function: cholesterol efflux capacity determinants. Curr Opin Lipidol. 2019;30(2):101–7. https://doi.org/10.1097/mol.0000000000000589.

    Article  CAS  PubMed  Google Scholar 

  63. Nakajima A, Mitomo S, Yuki H, Araki M, Seegers LM, McNulty I, et al. Gut microbiota and coronary plaque characteristics. J Am Heart Assoc. 2022;11(17):e026036. https://doi.org/10.1161/jaha.122.026036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gradisteanu Pircalabioru G, Liaw J, Gundogdu O, Corcionivoschi N, Ilie I, Oprea L, et al. Effects of the lipid profile, type 2 diabetes and medication on the metabolic syndrome-associated gut microbiome. Int J Mol Sci. 2022;23(14). https://doi.org/10.3390/ijms23147509.

  65. Vojinovic D, Radjabzadeh D, Kurilshikov A, Amin N, Wijmenga C, Franke L, et al. Relationship between gut microbiota and circulating metabolites in population-based cohorts. Nat Commun. 2019;10(1):5813. https://doi.org/10.1038/s41467-019-13721-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Guo G, Wu Y, Liu Y, Wang Z, Xu G, Wang X, et al. Exploring the causal effects of the gut microbiome on serum lipid levels: a two-sample Mendelian randomization analysis. Front Microbiol. 2023;14:1113334. https://doi.org/10.3389/fmicb.2023.1113334.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Yiu JHC, Chan KS, Cheung J, Li J, Liu Y, Wang Y, et al. Gut microbiota-associated activation of TLR5 induces apolipoprotein A1 production in the liver. Circ Res. 2020;127(10):1236–52. https://doi.org/10.1161/CIRCRESAHA.120.317362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hong C, Tontonoz P. Liver X receptors in lipid metabolism: opportunities for drug discovery. Nat Rev Drug Discovery. 2014;13(6):433–44. https://doi.org/10.1038/nrd4280.

    Article  CAS  PubMed  Google Scholar 

  69. Repa JJ, Turley SD, Lobaccaro JA, Medina J, Li L, Lustig K, et al. Regulation of absorption and ABC1-mediated efflux of cholesterol by RXR heterodimers. Science (New York, NY). 2000;289(5484):1524–9. https://doi.org/10.1126/science.289.5484.1524.

    Article  CAS  Google Scholar 

  70. Lo Sasso G, Murzilli S, Salvatore L, D’Errico I, Petruzzelli M, Conca P, et al. Intestinal specific LXR activation stimulates reverse cholesterol transport and protects from atherosclerosis. Cell Metab. 2010;12(2):187–93. https://doi.org/10.1016/j.cmet.2010.07.002.

    Article  CAS  PubMed  Google Scholar 

  71. Murthy S, Born E, Mathur SN, Field FJ. LXR/RXR activation enhances basolateral efflux of cholesterol in CaCo-2 cells. J Lipid Res. 2002;43(7):1054–64. https://doi.org/10.1194/jlr.m100358-jlr200.

    Article  CAS  PubMed  Google Scholar 

  72. Zhang L, Reue K, Fong LG, Young SG, Tontonoz P. Feedback regulation of cholesterol uptake by the LXR-IDOL-LDLR axis. Arterioscler Thromb Vasc Biol. 2012;32(11):2541–6. https://doi.org/10.1161/atvbaha.112.250571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Duval C, Touche V, Tailleux A, Fruchart JC, Fievet C, Clavey V, et al. Niemann-Pick C1 like 1 gene expression is down-regulated by LXR activators in the intestine. Biochem Biophys Res Commun. 2006;340(4):1259–63. https://doi.org/10.1016/j.bbrc.2005.12.137.

    Article  CAS  PubMed  Google Scholar 

  74. Hu X, Steffensen KR, Jiang ZY, Parini P, Gustafsson J, Gåfvels M, et al. LXRβ activation increases intestinal cholesterol absorption, leading to an atherogenic lipoprotein profile. J Intern Med. 2012;272(5):452–64. https://doi.org/10.1111/j.1365-2796.2012.02529.x.

    Article  CAS  PubMed  Google Scholar 

  75. Calpe-Berdiel L, Rotllan N, Fiévet C, Roig R, Blanco-Vaca F, Escolà-Gil JC. Liver X receptor-mediated activation of reverse cholesterol transport from macrophages to feces in vivo requires ABCG5/G8. J Lipid Res. 2008;49(9):1904–11. https://doi.org/10.1194/jlr.M700470-JLR200.

    Article  CAS  PubMed  Google Scholar 

  76. Linton MF, Tao H, Linton EF, Yancey PG. SR-BI: a multifunctional receptor in cholesterol homeostasis and atherosclerosis. Trends Endocrinol Metab. 2017;28(6):461–72. https://doi.org/10.1016/j.tem.2017.02.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Nguyen DV, Drover VA, Knopfel M, Dhanasekaran P, Hauser H, Phillips MC. Influence of class B scavenger receptors on cholesterol flux across the brush border membrane and intestinal absorption. J Lipid Res. 2009;50(11):2235–44. https://doi.org/10.1194/jlr.M900036-JLR200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Bietrix F, Yan D, Nauze M, Rolland C, Bertrand-Michel J, Coméra C, et al. Accelerated lipid absorption in mice overexpressing intestinal SR-BI. J Biol Chem. 2006;281(11):7214–9. https://doi.org/10.1074/jbc.M508868200.

    Article  CAS  PubMed  Google Scholar 

  79. Rigotti A, Freeman MW. Manipulating intestinal cholesterol absorption and hepatic cholesterol and bile acid metabolism by activation of deorphanized nuclear receptors. Gastroenterology. 2001;120(4):1054–5. https://doi.org/10.1016/s0016-5085(01)83919-6.

    Article  CAS  PubMed  Google Scholar 

  80. Bura KS, Lord C, Marshall S, McDaniel A, Thomas G, Warrier M, et al. Intestinal SR-BI does not impact cholesterol absorption or transintestinal cholesterol efflux in mice. J Lipid Res. 2013;54(6):1567–77. https://doi.org/10.1194/jlr.M034454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kwon J, Kim B, Lee C, Joung H, Kim BK, Choi IS, et al. Comprehensive amelioration of high-fat diet-induced metabolic dysfunctions through activation of the PGC-1alpha pathway by probiotics treatment in mice. PLoS ONE. 2020;15(2):e0228932. https://doi.org/10.1371/journal.pone.0228932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Schug TT, Li X. Sirtuin 1 in lipid metabolism and obesity. Ann Med. 2011;43(3):198–211. https://doi.org/10.3109/07853890.2010.547211.

    Article  CAS  PubMed  Google Scholar 

  83. Dash S, Xiao C, Morgantini C, Szeto L, Lewis GF. High-dose resveratrol treatment for 2 weeks inhibits intestinal and hepatic lipoprotein production in overweight/obese men. Arterioscler Thromb Vasc Biol. 2013;33(12):2895–901. https://doi.org/10.1161/atvbaha.113.302342.

    Article  CAS  PubMed  Google Scholar 

  84. Pang J, Raka F, Heirali AA, Shao W, Liu D, Gu J, et al. Resveratrol intervention attenuates chylomicron secretion via repressing intestinal FXR-induced expression of scavenger receptor SR-B1. Nat Commun. 2023;14(1):2656. https://doi.org/10.1038/s41467-023-38259-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Gonzalez FJ, Jiang C, Patterson AD. An intestinal microbiota-farnesoid X receptor axis modulates metabolic disease. Gastroenterology. 2016;151(5):845–59. https://doi.org/10.1053/j.gastro.2016.08.057.

    Article  CAS  PubMed  Google Scholar 

  86. Altmann SW, Davis HR Jr, Zhu LJ, Yao X, Hoos LM, Tetzloff G, et al. Niemann-Pick C1 Like 1 protein is critical for intestinal cholesterol absorption. Science (New York, NY). 2004;303(5661):1201–4. https://doi.org/10.1126/science.1093131.

    Article  CAS  Google Scholar 

  87. Jia L, Betters JL, Yu L. Niemann-pick C1-like 1 (NPC1L1) protein in intestinal and hepatic cholesterol transport. Annu Rev Physiol. 2011;73:239–59. https://doi.org/10.1146/annurev-physiol-012110-142233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Yoon HS, Ju JH, Kim HN, Park HJ, Ji Y, Lee JE, et al. Reduction in cholesterol absorption in Caco-2 cells through the down-regulation of Niemann-Pick C1-like 1 by the putative probiotic strains Lactobacillus rhamnosus BFE5264 and Lactobacillus plantarum NR74 from fermented foods. Int J Food Sci Nutr. 2013;64(1):44–52. https://doi.org/10.3109/09637486.2012.706598.

    Article  CAS  PubMed  Google Scholar 

  89. Badi SA, Motahhary A, Bahramali G, Masoumi M, Khalili SFS, Ebrahimzadeh N, et al. The regulation of Niemann-Pick C1-Like 1 (NPC1L1) gene expression in opposite direction by Bacteroides spp. and related outer membrane vesicles in Caco-2 cell line. J Diabetes Metab Dis. 2020;19(1):415–22. https://doi.org/10.1007/s40200-020-00522-3.

    Article  CAS  Google Scholar 

  90. Rao Y, Kuang Z, Li C, Guo S, Xu Y, Zhao D, et al. Gut Akkermansia muciniphila ameliorates metabolic dysfunction-associated fatty liver disease by regulating the metabolism of L-aspartate via gut-liver axis. Gut Microbes. 2021;13(1):1–19. https://doi.org/10.1080/19490976.2021.1927633.

    Article  CAS  PubMed  Google Scholar 

  91. Randrianarisoa E, Lehn-Stefan A, Wang X, Hoene M, Peter A, Heinzmann SS, et al. Relationship of serum trimethylamine N-oxide (TMAO) levels with early atherosclerosis in humans. Sci Rep. 2016;6:26745. https://doi.org/10.1038/srep26745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Sheng Z, Tan Y, Liu C, Zhou P, Li J, Zhou J, et al. Relation of circulating trimethylamine N-oxide with coronary atherosclerotic burden in patients with ST-segment elevation myocardial infarction. Am J Cardiol. 2019;123(6):894–8. https://doi.org/10.1016/j.amjcard.2018.12.018.

    Article  CAS  PubMed  Google Scholar 

  93. Heianza Y, Ma W, Manson JE, Rexrode KM, Qi L. Gut microbiota metabolites and risk of major adverse cardiovascular disease events and death: a systematic review and meta-analysis of prospective studies. J Am Heart Assoc. 2017;6(7). https://doi.org/10.1161/jaha.116.004947.

  94. Roncal C, Martínez-Aguilar E, Orbe J, Ravassa S, Fernandez-Montero A, Saenz-Pipaon G, et al. Trimethylamine-N-oxide (TMAO) predicts cardiovascular mortality in peripheral artery disease. Sci Rep. 2019;9(1):15580. https://doi.org/10.1038/s41598-019-52082-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Heianza Y, Ma W, DiDonato JA, Sun Q, Rimm EB, Hu FB, et al. Long-term changes in gut microbial metabolite trimethylamine N-oxide and coronary heart disease risk. J Am Coll Cardiol. 2020;75(7):763–72. https://doi.org/10.1016/j.jacc.2019.11.060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Bordoni L, Samulak JJ, Sawicka AK, Pelikant-Malecka I, Radulska A, Lewicki L, et al. Trimethylamine N-oxide and the reverse cholesterol transport in cardiovascular disease: a cross-sectional study. Sci Rep. 2020;10(1):18675. https://doi.org/10.1038/s41598-020-75633-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Jia J, Dou P, Gao M, Kong X, Li C, Liu Z, et al. Assessment of causal direction between gut microbiota-dependent metabolites and cardiometabolic health: a bidirectional Mendelian randomization analysis. Diabetes. 2019;68(9):1747–55. https://doi.org/10.2337/db19-0153.

    Article  CAS  PubMed  Google Scholar 

  98. Kühn T, Rohrmann S, Sookthai D, Johnson T, Katzke V, Kaaks R, et al. Intra-individual variation of plasma trimethylamine-N-oxide (TMAO), betaine and choline over 1 year. Clin Chem Lab Med. 2017;55(2):261–8. https://doi.org/10.1515/cclm-2016-0374.

    Article  CAS  PubMed  Google Scholar 

  99. Mohammadi A, Najar AG, Yaghoobi MM, Jahani Y, Vahabzadeh Z. Trimethylamine-N-oxide treatment induces changes in the ATP-binding cassette transporter A1 and scavenger receptor A1 in murine macrophage J774A.1 cells. Inflammation. 2016;39(1):393–404. https://doi.org/10.1007/s10753-015-0261-7.

    Article  CAS  PubMed  Google Scholar 

  100. Ding L, Chang M, Guo Y, Zhang L, Xue C, Yanagita T, et al. Trimethylamine-N-oxide (TMAO)-induced atherosclerosis is associated with bile acid metabolism. Lipids Health Dis. 2018;17(1):286. https://doi.org/10.1186/s12944-018-0939-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Xu Y, Li F, Zalzala M, Xu J, Gonzalez FJ, Adorini L, et al. Farnesoid X receptor activation increases reverse cholesterol transport by modulating bile acid composition and cholesterol absorption in mice. Hepatology (Baltimore, MD). 2016;64(4):1072–85. https://doi.org/10.1002/hep.28712.

    Article  CAS  PubMed  Google Scholar 

  102. Fu BC, Hullar MAJ, Randolph TW, Franke AA, Monroe KR, Cheng I, et al. Associations of plasma trimethylamine N-oxide, choline, carnitine, and betaine with inflammatory and cardiometabolic risk biomarkers and the fecal microbiome in the Multiethnic Cohort Adiposity Phenotype Study. Am J Clin Nutr. 2020;111(6):1226–34. https://doi.org/10.1093/ajcn/nqaa015.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Koh A, De Vadder F, Kovatcheva-Datchary P, Bäckhed F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell. 2016;165(6):1332–45. https://doi.org/10.1016/j.cell.2016.05.041.

    Article  CAS  PubMed  Google Scholar 

  104. Fiorucci S, Distrutti E. Bile acid-activated receptors, intestinal microbiota, and the treatment of metabolic disorders. Trends Mol Med. 2015;21(11):702–14. https://doi.org/10.1016/j.molmed.2015.09.001.

    Article  CAS  PubMed  Google Scholar 

  105. Zhao Y, Liu J, Hao W, Zhu H, Liang N, He Z, et al. Structure-specific effects of short-chain fatty acids on plasma cholesterol concentration in male Syrian hamsters. J Agric Food Chem. 2017;65(50):10984–92. https://doi.org/10.1021/acs.jafc.7b04666.

    Article  CAS  PubMed  Google Scholar 

  106. Reis SA, Conceição LL, Rosa DD, Siqueira NP, Peluzio MCG. Mechanisms responsible for the hypocholesterolaemic effect of regular consumption of probiotics. Nutr Res Rev. 2017;30(1):36–49. https://doi.org/10.1017/s0954422416000226.

    Article  CAS  PubMed  Google Scholar 

  107. Haghikia A, Zimmermann F, Schumann P, Jasina A, Roessler J, Schmidt D, et al. Propionate attenuates atherosclerosis by immune-dependent regulation of intestinal cholesterol metabolism. Eur Heart J. 2022;43(6):518–33. https://doi.org/10.1093/eurheartj/ehab644.

    Article  CAS  PubMed  Google Scholar 

  108. Xue H, Chen X, Yu C, Deng Y, Zhang Y, Chen S, et al. Gut microbially produced indole-3-propionic acid inhibits atherosclerosis by promoting reverse cholesterol transport and its deficiency is causally related to atherosclerotic cardiovascular disease. Circ Res. 2022;131(5):404–20. https://doi.org/10.1161/CIRCRESAHA.122.321253.

    Article  CAS  PubMed  Google Scholar 

  109. Chen Y, Xu C, Huang R, Song J, Li D, Xia M. Butyrate from pectin fermentation inhibits intestinal cholesterol absorption and attenuates atherosclerosis in apolipoprotein E-deficient mice. J Nutr Biochem. 2018;56:175–82. https://doi.org/10.1016/j.jnutbio.2018.02.011.

    Article  CAS  PubMed  Google Scholar 

  110. Sofyana NT, Zheng J, Manabe Y, Yamamoto Y, Kishino S, Ogawa J, et al. Gut microbial fatty acid metabolites (KetoA and KetoC) affect the progression of nonalcoholic steatohepatitis and reverse cholesterol transport metabolism in mouse model. Lipids. 2020;55(2):151–62. https://doi.org/10.1002/lipd.12219.

    Article  CAS  PubMed  Google Scholar 

  111. Schwarz M, Russell DW, Dietschy JM, Turley SD. Marked reduction in bile acid synthesis in cholesterol 7alpha-hydroxylase-deficient mice does not lead to diminished tissue cholesterol turnover or to hypercholesterolemia. J Lipid Res. 1998;39(9):1833–43.

    Article  CAS  PubMed  Google Scholar 

  112. Midtvedt T. Microbial bile acid transformation. Am J Clin Nutr. 1974;27(11):1341–7. https://doi.org/10.1093/ajcn/27.11.1341.

    Article  CAS  PubMed  Google Scholar 

  113. Russell DW. The enzymes, regulation, and genetics of bile acid synthesis. Annu Rev Biochem. 2003;72:137–74. https://doi.org/10.1146/annurev.biochem.72.121801.161712.

    Article  CAS  PubMed  Google Scholar 

  114. Klaassen CD, Cui JY. Review: mechanisms of how the intestinal microbiota alters the effects of drugs and bile acids. Drug Metab Dispos. 2015;43(10):1505–21. https://doi.org/10.1124/dmd.115.065698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Foley MH, O'Flaherty S, Allen G, Rivera AJ, Stewart AK, Barrangou R, et al. Lactobacillus bile salt hydrolase substrate specificity governs bacterial fitness and host colonization. Proceedings of the National Academy of Sciences of the United States of America. 2021;118(6). https://doi.org/10.1073/pnas.2017709118.

  116. Hansson GK, Robertson AK, Söderberg-Nauclér C. Inflammation and atherosclerosis. Annu Rev Pathol. 2006;1:297–329. https://doi.org/10.1146/annurev.pathol.1.110304.100100.

    Article  CAS  PubMed  Google Scholar 

  117. Sayin SI, Wahlström A, Felin J, Jäntti S, Marschall HU, Bamberg K, et al. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab. 2013;17(2):225–35. https://doi.org/10.1016/j.cmet.2013.01.003.

    Article  CAS  PubMed  Google Scholar 

  118. Zheng X, Huang F, Zhao A, Lei S, Zhang Y, Xie G, et al. Bile acid is a significant host factor shaping the gut microbiome of diet-induced obese mice. BMC Biol. 2017;15(1):120. https://doi.org/10.1186/s12915-017-0462-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Chambers KF, Day PE, Aboufarrag HT, Kroon PA. Polyphenol effects on cholesterol metabolism via bile acid biosynthesis, CYP7A1: a review. Nutrients. 2019;11(11). https://doi.org/10.3390/nu11112588

  120. Joyce SA, Kamil A, Fleige L, Gahan CGM. The cholesterol-lowering effect of oats and oat beta glucan: modes of action and potential role of bile acids and the microbiome. Front Nutr. 2019;6:171. https://doi.org/10.3389/fnut.2019.00171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. He M, Shi B. Gut microbiota as a potential target of metabolic syndrome: the role of probiotics and prebiotics. Cell Biosci. 2017;7:54. https://doi.org/10.1186/s13578-017-0183-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Lye HS, Kato T, Low WY, Taylor TD, Prakash T, Lew LC, et al. Lactobacillus fermentum FTDC 8312 combats hypercholesterolemia via alteration of gut microbiota. J Biotechnol. 2017;262:75–83. https://doi.org/10.1016/j.jbiotec.2017.09.007.

    Article  CAS  PubMed  Google Scholar 

  123. Xu W, Zou K, Zhan Y, Cai Y, Zhang Z, Tao X, et al. Enterococcus faecium GEFA01 alleviates hypercholesterolemia by promoting reverse cholesterol transportation via modulating the gut microbiota-SCFA axis. Front Nutr. 2022;9:1020734. https://doi.org/10.3389/fnut.2022.1020734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Qiu L, Tao X, Xiong H, Yu J, Wei H. Lactobacillus plantarum ZDY04 exhibits a strain-specific property of lowering TMAO via the modulation of gut microbiota in mice. Food Funct. 2018;9(8):4299–309. https://doi.org/10.1039/c8fo00349a.

    Article  CAS  PubMed  Google Scholar 

  125. Sohouli MH, Ozovanu OD, Fatahi S, Hekmatdoost A. Impact of probiotic supplementation on trimethylamine N-oxide (TMAO) in humans: a systematic review and meta-analysis of randomized controlled trials. Clinical Nutr ESPEN. 2022;50:56–62. https://doi.org/10.1016/j.clnesp.2022.06.006.

    Article  Google Scholar 

  126. Chi Y, Wu Z, Du C, Zhang M, Wang X, Xie A, et al. Regulatory effects mediated by ulvan oligosaccharide and its zinc complex on lipid metabolism in high-fat diet-fed mice. Carbohydr Polym. 2023;300:120249. https://doi.org/10.1016/j.carbpol.2022.120249.

    Article  CAS  PubMed  Google Scholar 

  127. Li D, Cui Y, Wang X, Liu F, Li X. Apple polyphenol extract improves high-fat diet-induced hepatic steatosis by regulating bile acid synthesis and gut microbiota in C57BL/6 male mice. J Agric Food Chem. 2021;69(24):6829–41. https://doi.org/10.1021/acs.jafc.1c02532.

    Article  CAS  PubMed  Google Scholar 

  128. Wang F, Zhao C, Tian G, Wei X, Ma Z, Cui J, et al. Naringin alleviates atherosclerosis in ApoE(-/-) mice by regulating cholesterol metabolism involved in gut microbiota remodeling. J Agric Food Chem. 2020;68(45):12651–60. https://doi.org/10.1021/acs.jafc.0c05800.

    Article  CAS  PubMed  Google Scholar 

  129. Morselli E, Criollo A, Rodriguez-Navas C, Clegg DJ. Chronic high fat diet consumption impairs metabolic health of male mice. Inflamm Cell Signal. 2014;1(6):e561. https://doi.org/10.14800/ics.561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Vors C, Joumard-Cubizolles L, Lecomte M, Combe E, Ouchchane L, Drai J, et al. Milk polar lipids reduce lipid cardiovascular risk factors in overweight postmenopausal women: towards a gut sphingomyelin-cholesterol interplay. Gut. 2020;69(3):487–501. https://doi.org/10.1136/gutjnl-2018-318155.

    Article  CAS  PubMed  Google Scholar 

  131. Zhao W, Wang L, Haller V, Ritsch A. A novel candidate for prevention and treatment of atherosclerosis: urolithin B decreases lipid plaque deposition in apoE(-/-) mice and increases early stages of reverse cholesterol transport in ox-LDL treated macrophages cells. Mol Nutr Food Res. 2019;63(10):e1800887. https://doi.org/10.1002/mnfr.201800887.

    Article  CAS  PubMed  Google Scholar 

  132. Xie B, Zu X, Wang Z, Xu X, Liu G, Liu R. Ginsenoside Rc ameliorated atherosclerosis via regulating gut microbiota and fecal metabolites. Front Pharmacol. 2022;13:990476. https://doi.org/10.3389/fphar.2022.990476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The images used in the figure were created by MedPeer.

Author information

Authors and Affiliations

Authors

Contributions

Yangyang Jiang and Shuchao Pang contributed to the conception of and writing of the manuscript. Xiaoyu Liu and Lixin Wang contributed to the analysis and revision of the manuscript. Shuchao Pang and Yi Liu helped perform the analysis with constructive discussions.

Corresponding authors

Correspondence to Shuchao Pang or Yi Liu.

Ethics declarations

Ethics Approval

No human studies were carried out by the authors for this article.

Competing Interests

The authors declare no conflicts of interest, including in the development of therapeutics to intervene upon the mechanisms described herein.

Additional information

Associate Editor Yihua Bei oversaw the review of this article

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Pang, S., Liu, X. et al. The Gut Microbiome Affects Atherosclerosis by Regulating Reverse Cholesterol Transport. J. of Cardiovasc. Trans. Res. (2024). https://doi.org/10.1007/s12265-024-10480-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12265-024-10480-3

Keywords

Navigation