Skip to main content

Advertisement

Log in

Automated Data Transformation and Feature Extraction for Oxygenation-Sensitive Cardiovascular Magnetic Resonance Images

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Oxygenation-sensitive cardiovascular magnetic resonance (OS-CMR) is a novel, powerful tool for assessing coronary function in vivo. The data extraction and analysis however are labor-intensive. The objective of this study was to provide an automated approach for the extraction, visualization, and biomarker selection of OS-CMR images. We created a Python-based tool to automate extraction and export of raw patient data, featuring 3336 attributes per participant, into a template compatible with common data analytics frameworks, including the functionality to select predictive features for the given disease state. Each analysis was completed in about 2 min. The features selected by both ANOVA and MIC significantly outperformed (p < 0.001) the null set and complete set of features in two datasets, with mean AUROC scores of 0.89eatures f 0.94lete set of features in two datasets, with mean AUROC scores that our tool is suitable for automated data extraction and analysis of OS-CMR images.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All python code for the toolkit can be made available upon request. A sample of the data can also be provided on demand.

References

  1. Khalique Z, Pennell DJ. What is CMR doing for patients today? Eur Heart J. 2018;39(4):266–70. https://doi.org/10.1093/eurheartj/ehx778.

    Article  PubMed  Google Scholar 

  2. Pennell DJ, Sechtem UP, Higgins CB, Manning WJ, Pohost GM, Rademakers FE,…Yucel EK. Clinical indications for cardiovascular magnetic resonance (CMR): consensus panel report. Eur Heart J, 2004;25(21), 1940–1965. https://doi.org/10.1016/j.ehj.2004.06.040

  3. Hillier E, Friedrich MG. The potential of oxygenation-sensitive CMR in Heart failure. Curr Heart Fail Rep. 2021. https://doi.org/10.1007/s11897-021-00525-y.

    Article  PubMed  Google Scholar 

  4. Fischer K, Yamaji K, Luescher S, Ueki Y, Jung B, von Tengg-Kobligk H, Windecker S, Friedrich MG, Eberle B, Guensch DP. Feasibility of cardiovascular magnetic resonance to detect oxygenation deficits in patients with multi-vessel coronary artery disease triggered by breathing maneuvers. J Cardiovasc Magn Reson. 2018;20(1):31. https://doi.org/10.1186/s12968-018-0446-y.PMID:29730991;PMCID:PMC5937049.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Fischer K, Guensch DP, Jung B, King I, von Tengg-Kobligk H, Giannetti N, Eberle B, Friedrich MG. Insights into myocardial oxygenation and cardiovascular magnetic resonance tissue biomarkers in heart failure with preserved ejection fraction. Circ Heart Fail. 2022;15(4):e008903. https://doi.org/10.1161/CIRCHEARTFAILURE.121.008903.

    Article  CAS  PubMed  Google Scholar 

  6. Friedrich MG, Karamitsos TD. Oxygenation-sensitive cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2013;15(1):43. https://doi.org/10.1186/1532-429X-15-43.PMID:23706167;PMCID:PMC3681671.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Dharmakumar R, Qi X, Hong J, Wright GA. Detecting microcirculatory changes in blood oxygen state with steady-state free precession imaging. Magn Reson Med. 2006;55(6):1372–80. https://doi.org/10.1002/mrm.20911.

    Article  PubMed  Google Scholar 

  8. Hillier E, Covone J, Friedrich MG. Oxygenation-sensitive cardiac MRI with vasoactive breathing maneuvers for the non-invasive assessment of coronary microvascular dysfunction. JoVE (Journal of Visualized Experiments). 2022;186:e64149. https://doi.org/10.3791/64149.

    Article  Google Scholar 

  9. Leiner T, Rueckert D, Suinesiaputra A, Baeßler B, Nezafat R, Išgum I, Young AA. Machine learning in cardiovascular magnetic resonance: basic concepts and applications. J Cardiovasc Magn Reson. 2019;21(1):61. https://doi.org/10.1186/s12968-019-0575-y.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Fotaki A, Puyol-Antón E, Chiribiri A, Botnar R, Pushparajah K, Prieto C. Artificial intelligence in cardiac MRI: is clinical adoption forthcoming? Front Cardiovasc Med. 2022;8:818765. https://doi.org/10.3389/fcvm.2021.818765.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ravi D, Wong C, Deligianni F, Berthelot M, Andreu-Perez J, Lo B, Yang G-Z. Deep learning for health informatics. IEEE J Biomed Health Inform. 2017;21(1):4–21. https://doi.org/10.1109/JBHI.2016.2636665.

    Article  PubMed  Google Scholar 

  12. Baeßler B, Weiss K, Pinto Dos Santos D. Robustness and reproducibility of radiomics in magnetic resonance imaging: a phantom study. Invest Radiol. 2019;54(4):221–8. https://doi.org/10.1097/RLI.0000000000000530.

    Article  PubMed  Google Scholar 

  13. Neisius U, El-Rewaidy H, Nakamori S, Rodriguez J, Manning WJ, Nezafat R. Radiomic analysis of myocardial native T1 imaging discriminates between hypertensive heart disease and hypertrophic cardiomyopathy. JACC: Cardiovasc Imaging. 2019;12(10):1946–54.

    PubMed  Google Scholar 

  14. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK,...& American Heart Association Writing Group on Myocardial Segmentation and Registration for Cardiac Imaging. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. Circulation, 2022;105(4), 539-542

  15. Kraskov A, Stögbauer H, Grassberger P. Estimating mutual information. Phys Rev E. 2004;69(6):066138. https://doi.org/10.1103/PhysRevE.69.066138.

    Article  CAS  Google Scholar 

  16. Chen YW, & Lin CJ (2006) Combining SVMs with various feature selection strategies. In I. Guyon, M. Nikravesh, S. Gunn, & L. A. Zadeh (Eds.), Feature Extraction (Vol. 207, pp. 315–324). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-35488-8_13

  17. Spencer R, Thabtah F, Abdelhamid N, Thompson M. Exploring feature selection and classification methods for predicting heart disease. Digital Health. 2020;6:2055207620914777. https://doi.org/10.1177/2055207620914777.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Pal M, Parija S. Prediction of heart diseases using random forest. J Phys: Conf Ser. 2021;1817(1):012009. https://doi.org/10.1088/1742-6596/1817/1/012009.

    Article  Google Scholar 

  19. Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, van Mulbregt P. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature Methods. 2020;17(3):261–72. https://doi.org/10.1038/s41592-019-0686-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O,…Cournapeau D. (n.d.) Scikit-learn: machine learning in Python. MACHINE LEARNING IN PYTHON.

  21. Hillier E, Plasa G, Luu J, Benovoy M, Friedrich M G. Machine learning analysis of oxygenation-sensitive cardiovascular magnetic resonance imaging in patients with coronary artery stenosis. Society of Cardiovascular Magnetic Resonance Imaging. 24–26. San Diego, California. USA: Poster Presentation; 2023.

    Google Scholar 

  22. Ghantous CM, Kamareddine L, Farhat R, Zouein FA, Mondello S, Kobeissy F, Zeidan A. Advances in cardiovascular biomarker discovery. Biomedicines. 2020;8(12):552. https://doi.org/10.3390/biomedicines8120552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hathaway QA, Roth SM, Pinti MV, Sprando DC, Kunovac A, Durr AJ,…Hollander JM (2019) Machine-learning to stratify diabetic patients using novel cardiac biomarkers and integrative genomics. Cardiovasc Diabetol, 18(1), 78. https://doi.org/10.1186/s12933-019-0879-0

  24. Jack CR, Bennett DA, Blennow K, Carrillo MC, Feldman HH, Frisoni GB,…Dubois B (2016) A/T/N: an unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology, 87(5), 539–547. https://doi.org/10.1212/WNL.0000000000002923

Download references

Funding

Parts of the work were funded by the MUHC McGill University Health Center Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias G. Friedrich.

Ethics declarations

Ethics Approval

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000 (5).

Consent to Participate

Informed consent was obtained from all patients for being included in the study.

Competing Interests

The authors declare no competing interests.

Additional information

Editor-in-Chief Enrique Lara-Pezzi oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plasa, G., Hillier, E., Luu, J. et al. Automated Data Transformation and Feature Extraction for Oxygenation-Sensitive Cardiovascular Magnetic Resonance Images. J. of Cardiovasc. Trans. Res. (2024). https://doi.org/10.1007/s12265-023-10474-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12265-023-10474-7

Keywords

Navigation