Skip to main content

Advertisement

Log in

Generation of Autologous Vascular Endothelial Cells for Patients with Peripheral Artery Disease

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Peripheral artery disease (PAD) is a prevalent cardiovascular disease with risks of limb loss. Our objective is to establish an autologous cell source for vascular regeneration to achieve limb salvage in PAD. Six PAD patients (age 50–80) were enrolled with their peripheral blood collected to derive vascular endothelial cells (ECs) with two different approaches: (1) endothelial progenitor cell (EPC) approach and (2) induced pluripotent stem cell (iPSC) approach. The iPSC approach successfully generated patient-specific ECs for all PAD patients, while the EPC approach did not yield any colony-forming ECs in any of the patients. The patient-derived iPSC-ECs expressed endothelial markers and exhibited endothelial functions. However, elevated inflammatory status with VCAM-1 expression was observed in the patient-derived cells. Pharmacological treatment with resveratrol resulted in patient-specific responses in cell viability and VCAM-1 expression. Our study demonstrates the potential of iPSC-ECs for autologous regenerative therapy in PAD, offering promise for personalized treatments for ischemic PAD.

Graphical Abstract

Our study establishes autologous endothelial cells from induced pluripotent stem cells as a cellular resource for regenerative treatments in peripheral artery disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ABI:

Ankle brachial index

Ac-LDL:

Acetylated low-density lipoprotein

cGMP:

Current good manufacturing practice

EC:

Endothelial cell

EDTA:

Ethylenediaminetetraacetic acid

ELISA:

Enzyme-linked immunosorbent assay

EPC:

Endothelial progenitor cell

FACS:

Fluorescence-activated cell sorting

FBS:

Fetal bovine serum

HRP:

Horseradish peroxidase

iPSC:

Induced pluripotent stem cell

MOI:

Multiplicity of infection

OSKM:

Oct4, Sox2, Klf4, and c-Myc

PAD:

Peripheral artery disease

PBMC:

Peripheral blood mononuclear cell

PBS:

Phosphate buffered saline

rhBMP4:

Recombinant human bone morphogenetic protein 4

rhVEGF:

Recombinant human vascular endothelial growth factor

rhVTN:

Recombinant human vitronectin

ROS:

Reactive oxygen species

VCAM-1:

Vascular cell adhesion molecule 1

References

  1. Hiramoto JS, Teraa M, de Borst GJ, Conte MS. Interventions for lower extremity peripheral artery disease. Nat Rev Cardiol. 2018;15:332–50.

    Article  PubMed  Google Scholar 

  2. Kullo IJ, Rooke TW. Clinical practice. Peripheral artery disease. N Engl J Med. 2016;374:861–71.

    Article  CAS  PubMed  Google Scholar 

  3. Rigato M, Monami M, Fadini GP. Autologous cell therapy for peripheral arterial disease: systematic review and meta-analysis of randomized, nonrandomized, and noncontrolled studies. Circ Res. 2017;120:1326–40.

    Article  CAS  PubMed  Google Scholar 

  4. Wong WT, Tian XY, Huang Y. Endothelial dysfunction in diabetes and hypertension: cross talk in RAS, BMP4, and ROS-dependent COX-2-derived prostanoids. J Cardiovasc Pharmacol. 2013;61:204–14.

    Article  CAS  PubMed  Google Scholar 

  5. Yoder MC. Defining human endothelial progenitor cells. J Thromb Haemost. 2009;7(Suppl 1):49–52.

    Article  CAS  PubMed  Google Scholar 

  6. Allen JB, Khan S, Lapidos KA, Ameer GA. Toward engineering a human neoendothelium with circulating progenitor cells. Stem Cells. 2010;28:318–28.

    Article  CAS  PubMed  Google Scholar 

  7. Lee SJ, Sohn YD, Andukuri A, Kim S, Byun J, Han JW, et al. Enhanced therapeutic and long-term dynamic vascularization effects of human pluripotent stem cell-derived endothelial cells encapsulated in a nanomatrix gel. Circulation. 2017;136:1939–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sundaram S, One J, Siewert J, Teodosescu S, Zhao L, Dimitrievska S, et al. Tissue-engineered vascular grafts created from human induced pluripotent stem cells. Stem Cells Transl Med. 2014;3:1535–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Patsch C, Challet-Meylan L, Thoma EC, Urich E, Heckel T, O'Sullivan JF, et al. Generation of vascular endothelial and smooth muscle cells from human pluripotent stem cells. Nat Cell Biol. 2015;17:994–1003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang H, Zhang J, Ungvari Z, Zhang C. Resveratrol improves endothelial function: role of TNFα and vascular oxidative stress. Arterioscler Thromb Vasc Biol. 2009;29:1164–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fadini GP, Sartore S, Albiero M, Baesso I, Murphy E, Menegolo M, et al. Number and function of endothelial progenitor cells as a marker of severity for diabetic vasculopathy. Arterioscler Thromb Vasc Biol. 2006;26:2140–6.

    Article  CAS  PubMed  Google Scholar 

  12. Bitterli L, Afan S, Bühler S, DiSanto S, Zwahlen M, Schmidlin K, et al. Endothelial progenitor cells as a biological marker of peripheral artery disease. Vasc Med. 2016;21:3–11.

    Article  CAS  PubMed  Google Scholar 

  13. Gorashi R, Rivera-Bolanos N, Dang C, Chai C, Kovacs B, Alharbi S, et al. Modeling diabetic endothelial dysfunction with patient-specific induced pluripotent stem cells. Bioengineering & Translational Medicine. 2023;n/a:e10592.

    Article  Google Scholar 

  14. Ungvari Z, Bagi Z, Feher A, Recchia FA, Sonntag WE, Pearson K, et al. Resveratrol confers endothelial protection via activation of the antioxidant transcription factor Nrf2. Am J Physiol Heart Circ Physiol. 2010;299:H18–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jiang B, Jen M, Perrin L, Wertheim JA, Ameer GA. SIRT1 Overexpression maintains cell phenotype and function of endothelial cells derived from induced pluripotent stem cells. Stem Cells Dev. 2015;24:2740–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. McDermott MM, Leeuwenburgh C, Guralnik JM, Tian L, Sufit R, Zhao L, et al. Effect of resveratrol on walking performance in older people with peripheral artery disease: The restore randomized clinical trial. JAMA Cardiol. 2017;2:902–7.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Raval Z, Losordo DW. Cell therapy of peripheral arterial disease: from experimental findings to clinical trials. Circ Res. 2013;112:1288–302.

    Article  CAS  PubMed  Google Scholar 

  18. Teraa M, Sprengers RW, Schutgens RE, Slaper-Cortenbach IC, van der Graaf Y, Algra A, et al. Effect of repetitive intra-arterial infusion of bone marrow mononuclear cells in patients with no-option limb ischemia: the randomized, double-blind, placebo-controlled Rejuvenating Endothelial Progenitor Cells via Transcutaneous Intra-arterial Supplementation (JUVENTAS) trial. Circulation. 2015;131:851–60.

    Article  CAS  PubMed  Google Scholar 

  19. Gupta PK, Chullikana A, Parakh R, Desai S, Das A, Gottipamula S, et al. A double blind randomized placebo controlled phase I/II study assessing the safety and efficacy of allogeneic bone marrow derived mesenchymal stem cell in critical limb ischemia. J Transl Med. 2013;11:143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Szabo GV, Kovesd Z, Cserepes J, Daroczy J, Belkin M, Acsady G. Peripheral blood-derived autologous stem cell therapy for the treatment of patients with late-stage peripheral artery disease-results of the short- and long-term follow-up. Cytotherapy. 2013;15:1245–52.

    Article  PubMed  Google Scholar 

  21. Asahara T, Isner JM. Endothelial progenitor cells for vascular regeneration. J Hematotherapy Stem Cell Res. 2002;11:171–8.

    Article  Google Scholar 

  22. Rufaihah AJ, Huang NF, Jamé S, Lee JC, Nguyen HN, Byers B, et al. Endothelial cells derived from human iPSCS increase capillary density and improve perfusion in a mouse model of peripheral arterial disease. Arterioscler Thromb Vasc Biol. 2011;31:e72–e9.

    Article  CAS  PubMed  Google Scholar 

  23. Samuel R, Daheron L, Liao S, Vardam T, Kamoun WS, Batista A, et al. Generation of functionally competent and durable engineered blood vessels from human induced pluripotent stem cells. Proc Natl Acad Sci. 2013;110:12774–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Foster AA, Dewi RE, Cai L, Hou L, Strassberg Z, Alcazar CA, et al. Protein-engineered hydrogels enhance the survival of induced pluripotent stem cell-derived endothelial cells for treatment of peripheral arterial disease. Biomaterials science. 2018;6:614–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sharma R, Khristov V, Rising A, Jha BS, Dejene R, Hotaling N, et al. Clinical-grade stem cell-derived retinal pigment epithelium patch rescues retinal degeneration in rodents and pigs. Sci Transl Med. 2019;11:eaat5580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rosova I, Dao M, Capoccia B, Link D, Nolta JA. Hypoxic preconditioning results in increased motility and improved therapeutic potential of human mesenchymal stem cells. Stem Cells. 2008;26:2173–82.

    Article  CAS  PubMed  Google Scholar 

  27. Laflamme MA, Chen KY, Naumova AV, Muskheli V, Fugate JA, Dupras SK, et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol. 2007;25:1015–24.

    Article  CAS  PubMed  Google Scholar 

  28. Lee AS, Inayathullah M, Lijkwan MA, Zhao X, Sun W, Park S, et al. Prolonged survival of transplanted stem cells after ischaemic injury via the slow release of pro-survival peptides from a collagen matrix. Nat Biomed Eng. 2018;2:104–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nguyen PK, Lan F, Wang Y, Wu JC. Imaging: guiding the clinical translation of cardiac stem cell therapy. Circ Res. 2011;109:962–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Templin C, Zweigerdt R, Schwanke K, Olmer R, Ghadri JR, Emmert MY, et al. Transplantation and tracking of human-induced pluripotent stem cells in a pig model of myocardial infarction: assessment of cell survival, engraftment, and distribution by hybrid single photon emission computed tomography/computed tomography of sodium iodide symporter transgene expression. Circulation. 2012;126:430–9.

    Article  CAS  PubMed  Google Scholar 

  31. Jiang B, Wu Y, Haney CR, Duan C, Ameer GA. Assessment of an engineered endothelium via single-photon emission computed tomography. Biotechnol Bioeng. 2017;114:2371–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Melina Kibbe and Dr. Karen Ho from Northwestern Memorial Hospital (Chicago, IL) for clinical support throughout the project. We also thank members from the Clinical Research Units of the Northwestern University Clinical and Translational Sciences (NUCATS) Institute for coordination and nursing services. This work was supported by the equipment, training, and services from the Northwestern University RHLCCC Flow Cytometry Facility (Evanston and Chicago, IL) and the Stem Cell Core Facility (Chicago, IL).

Funding

This work is funded by the National Institute of Health (5R01EB017129), the American Heart Association (14POST20160091 and 19TPA34890008), and the Chicago Biomedical Consortium (PDR-008).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin Jiang or Guillermo A. Ameer.

Ethics declarations

Ethics Approval and Consent to Participate

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000 (5). Informed consent was obtained from all patients for being included in the study.

Conflict of Interest

The authors declare no competing interests.

Additional information

Associate Editor Nicola Smart oversaw the review of this article

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, B., Wang, X., Rivera-Bolanos, N. et al. Generation of Autologous Vascular Endothelial Cells for Patients with Peripheral Artery Disease. J. of Cardiovasc. Trans. Res. (2023). https://doi.org/10.1007/s12265-023-10452-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12265-023-10452-z

Keywords

Navigation