Skip to main content

Advertisement

Log in

Epicardial Adipose Tissue: a Potential Therapeutic Target for Cardiovascular Diseases

  • Review
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract 

With increased ageing of the population, cardiovascular disease (CVD) has become the most important factor endangering human health worldwide. Although the treatment of CVD has become increasingly advanced, there are still a considerable number of patients with conditions that have not improved. According to the latest clinical guidelines of the European Cardiovascular Association, obesity has become an independent risk factor for CVD. Adipose tissue includes visceral adipose tissue and subcutaneous adipose tissue. Many previous studies have focused on subcutaneous adipose tissue, but visceral adipose tissue has been rarely studied. However, as a type of visceral adipose tissue, epicardial adipose tissue (EAT) has attracted the attention of researchers because of its unique anatomical and physiological characteristics. This review will systematically describe the physiological characteristics and evaluation methods of EAT and emphasize the important role and treatment measures of EAT in CVD.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Not applicable.

References 

  1. Virani SS, Alonso A, Aparicio HJ, et al. Heart Disease and Stroke Statistics-2021 update: a report from the American Heart Association. Circulation. 2021;143(8):e254–743.

    Article  PubMed  Google Scholar 

  2. Kong CY, Guo Z, Song P, Zhang X, Yuan YP, Teng T, Yan L, Tang QZ. Underlying the mechanisms of doxorubicin-induced acute cardiotoxicity: oxidative stress and cell death. Int J Biol Sci. 2022;18(2):760–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Iacobellis G. Epicardial adipose tissue in contemporary cardiology. Nat Rev Cardiol. 2022;19(9):593–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cinti S. Pink adipocytes. Trends Endocrinol Metab. 2018;29(9):651–66.

    Article  CAS  PubMed  Google Scholar 

  5. Sakers A, De Siqueira MK, Seale P, Villanueva CJ. Adipose-tissue plasticity in health and disease. Cell. 2022;185(3):419–46.

    Article  CAS  PubMed  Google Scholar 

  6. Reyes-Farias M, Fos-Domenech J, Serra D, Herrero L, Sanchez-Infantes D. White adipose tissue dysfunction in obesity and aging. Biochem Pharmacol. 2021;192:114723.

    Article  CAS  PubMed  Google Scholar 

  7. Hammoud SH, AlZaim I, Al-Dhaheri Y, Eid AH, El-Yazbi AF. Perirenal adipose tissue inflammation: novel insights linking metabolic dysfunction to renal diseases. Front Endocrinol (Lausanne). 2021;12: 707126.

    Article  PubMed  Google Scholar 

  8. Corradi D, Maestri R, Callegari S, Pastori P, Goldoni M, Luong TV, Bordi C. The ventricular epicardial fat is related to the myocardial mass in normal, ischemic and hypertrophic hearts. Cardiovasc Pathol. 2004;13(6):313–6.

    Article  PubMed  Google Scholar 

  9. Rabkin SW. Epicardial fat: properties, function and relationship to obesity. Obes Rev. 2007;8(3):253–61.

    Article  CAS  PubMed  Google Scholar 

  10. McAninch EA, Fonseca TL, Poggioli R, Panos AL, Salerno TA, Deng Y, Li Y, Bianco AC, Iacobellis G. Epicardial adipose tissue has a unique transcriptome modified in severe coronary artery disease. Obesity (Silver Spring). 2015;23(6):1267–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Marchington JM, Pond CM. Site-specific properties of pericardial and epicardial adipose tissue: the effects of insulin and high-fat feeding on lipogenesis and the incorporation of fatty acids in vitro. Int J Obes. 1990;14(12):1013–22.

    CAS  PubMed  Google Scholar 

  12. Sacks HS, Fain JN, Holman B, et al. Uncoupling protein-1 and related messenger ribonucleic acids in human epicardial and other adipose tissues: epicardial fat functioning as brown fat. J Clin Endocrinol Metab. 2009;94(9):3611–5.

    Article  CAS  PubMed  Google Scholar 

  13. Peterson SJ, Yadav R, Iacobellis G. Cardioprotective heme oxygenase 1-pgc1alpha signaling in epicardial fat attenuates cardiovascular risk in humans as in obese mice. Obesity (Silver Spring). 2019;27(10):1560–1.

    Article  PubMed  Google Scholar 

  14. Gruzdeva OV, Dyleva YA, Belik EV, et al. Relationship between epicardial and coronary adipose tissue and the expression of adiponectin, leptin, and interleukin 6 in patients with coronary artery disease. J Pers Med. 2022;12(2):129.

  15. Hirata Y, Tabata M, Kurobe H, et al. Coronary atherosclerosis is associated with macrophage polarization in epicardial adipose tissue. J Am Coll Cardiol. 2011;58(3):248–55.

    Article  CAS  PubMed  Google Scholar 

  16. Huang W, Wu X, Xue Y, Zhou Y, Xiang H, Yang W, Wei Y. MicroRNA-3614 regulates inflammatory response via targeting TRAF6-mediated MAPKs and NF-kappaB signaling in the epicardial adipose tissue with coronary artery disease. Int J Cardiol. 2021;324:152–64.

    Article  PubMed  Google Scholar 

  17. Baker AR, Harte AL, Howell N, et al. Epicardial adipose tissue as a source of nuclear factor-kappaB and c-Jun N-terminal kinase mediated inflammation in patients with coronary artery disease. J Clin Endocrinol Metab. 2009;94(1):261–7.

    Article  CAS  PubMed  Google Scholar 

  18. Shateri H, Manafi B, Tayebinia H, Karimi J, Khodadadi I. Imbalance in thioredoxin system activates NLRP3 inflammasome pathway in epicardial adipose tissue of patients with coronary artery disease. Mol Biol Rep. 2021;48(2):1181–91.

    Article  CAS  PubMed  Google Scholar 

  19. Ansari MA, Mohebati M, Poursadegh F, Foroughian M, Shamloo AS. Is echocardiographic epicardial fat thickness increased in patients with coronary artery disease? A systematic review and meta-analysis. Electron Physician. 2018;10(9):7249–58.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Rosito GA, Massaro JM, Hoffmann U, Ruberg FL, Mahabadi AA, Vasan RS, O’Donnell CJ, Fox CS. Pericardial fat, visceral abdominal fat, cardiovascular disease risk factors, and vascular calcification in a community-based sample: the Framingham Heart Study. Circulation. 2008;117(5):605–13.

    Article  PubMed  Google Scholar 

  21. Ding J, Hsu FC, Harris TB, et al. The association of pericardial fat with incident coronary heart disease: the Multi-Ethnic Study of Atherosclerosis (MESA). Am J Clin Nutr. 2009;90(3):499–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mahabadi AA, Lehmann N, Kalsch H, et al. Association of epicardial adipose tissue with progression of coronary artery calcification is more pronounced in the early phase of atherosclerosis: results from the Heinz Nixdorf recall study. JACC Cardiovasc Imaging. 2014;7(9):909–16.

    Article  PubMed  Google Scholar 

  23. Ma R, van Assen M, Ties D, Pelgrim GJ, van Dijk R, Sidorenkov G, van Ooijen PMA, van der Harst P, Vliegenthart R. Focal pericoronary adipose tissue attenuation is related to plaque presence, plaque type, and stenosis severity in coronary CTA. Eur Radiol. 2021;31(10):7251–61.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Park JS, Choi SY, Zheng M, et al. Epicardial adipose tissue thickness is a predictor for plaque vulnerability in patients with significant coronary artery disease. Atherosclerosis. 2013;226(1):134–9.

    Article  CAS  PubMed  Google Scholar 

  25. Mahabadi AA, Berg MH, Lehmann N, et al. Association of epicardial fat with cardiovascular risk factors and incident myocardial infarction in the general population: the Heinz Nixdorf Recall Study. J Am Coll Cardiol. 2013;61(13):1388–95.

    Article  PubMed  Google Scholar 

  26. Parisi V, Rengo G, Perrone-Filardi P, et al. Increased Epicardial Adipose Tissue Volume Correlates With Cardiac Sympathetic Denervation in Patients With Heart Failure. Circ Res. 2016;118(8):1244–53.

    Article  CAS  PubMed  Google Scholar 

  27. Goeller M, Achenbach S, Marwan M, et al. Epicardial adipose tissue density and volume are related to subclinical atherosclerosis, inflammation and major adverse cardiac events in asymptomatic subjects. J Cardiovasc Comput Tomogr. 2018;12(1):67–73.

    Article  PubMed  Google Scholar 

  28. Nalliah CJ, Bell JR, Raaijmakers AJA, et al. Epicardial adipose tissue accumulation confers atrial conduction abnormality. J Am Coll Cardiol. 2020;76(10):1197–211.

    Article  CAS  PubMed  Google Scholar 

  29. Abe I, Teshima Y, Kondo H, et al. Association of fibrotic remodeling and cytokines/chemokines content in epicardial adipose tissue with atrial myocardial fibrosis in patients with atrial fibrillation. Heart Rhythm. 2018;15(11):1717–27.

    Article  PubMed  Google Scholar 

  30. Mocanu V, Timofte D, Oboroceanu T, Cretu-Silivestru IS, Pricope-Veselin A, Moraru M, Butcovan D. Association of ghrelin receptor and inflammation in peri-atrial adipose tissue from obese patients with postoperative atrial fibrillation. Acta Endocrinol (Buchar). 2020;16(3):298–302.

    Article  CAS  PubMed  Google Scholar 

  31. Vyas V, Hunter RJ, Longhi MP, Finlay MC. Inflammation and adiposity: new frontiers in atrial fibrillation. Europace. 2020;22(11):1609–18.

    Article  PubMed  Google Scholar 

  32. Thanassoulis G, Massaro JM, O’Donnell CJ, et al. Pericardial fat is associated with prevalent atrial fibrillation: the Framingham Heart Study. Circ Arrhythm Electrophysiol. 2010;3(4):345–50.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Batal O, Schoenhagen P, Shao M, Ayyad AE, Van Wagoner DR, Halliburton SS, Tchou PJ, Chung MK. Left atrial epicardial adiposity and atrial fibrillation. Circ Arrhythm Electrophysiol. 2010;3(3):230–6.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Maeda M, Oba K, Yamaguchi S, Arasaki O, Sata M, Masuzaki H, Shimabukuro M. Usefulness of epicardial adipose tissue volume to predict recurrent atrial fibrillation after radiofrequency catheter ablation. Am J Cardiol. 2018;122(10):1694–700.

    Article  PubMed  Google Scholar 

  35. Masuda M, Mizuno H, Enchi Y, et al. Abundant epicardial adipose tissue surrounding the left atrium predicts early rather than late recurrence of atrial fibrillation after catheter ablation. J Interv Card Electrophysiol. 2015;44(1):31–7.

    Article  PubMed  Google Scholar 

  36. Warbrick I, Rabkin SW. Hypoxia-inducible factor 1-alpha (HIF-1alpha) as a factor mediating the relationship between obesity and heart failure with preserved ejection fraction. Obes Rev. 2019;20(5):701–12.

    Article  CAS  PubMed  Google Scholar 

  37. Li X, Li J, Wang L, et al. The role of metformin and resveratrol in the prevention of hypoxia-inducible factor 1alpha accumulation and fibrosis in hypoxic adipose tissue. Br J Pharmacol. 2016;173(12):2001–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Maimaituxun G, Kusunose K, Yamada H, et al. Deleterious effects of epicardial adipose tissue volume on global longitudinal strain in patients with preserved left ventricular ejection fraction. Front Cardiovasc Med. 2020;7:607825.

    Article  PubMed  Google Scholar 

  39. van Woerden G, Gorter TM, Westenbrink BD, Willems TP, van Veldhuisen DJ, Rienstra M. Epicardial fat in heart failure patients with mid-range and preserved ejection fraction. Eur J Heart Fail. 2018;20(11):1559–66.

    Article  PubMed  Google Scholar 

  40. Agra RM, Teijeira-Fernandez E, Pascual-Figal D, Sanchez-Mas J, Fernandez-Trasancos A, Gonzalez-Juanatey JR, Eiras S. Adiponectin and p53 mRNA in epicardial and subcutaneous fat from heart failure patients. Eur J Clin Invest. 2014;44(1):29–37.

    Article  CAS  PubMed  Google Scholar 

  41. Zhao L, Guo Z, Wang P, Zheng M, Yang X, Liu Y, Ma Z, Chen M, Yang X. Proteomics of epicardial adipose tissue in patients with heart failure. J Cell Mol Med. 2020;24(1):511–20.

    Article  CAS  PubMed  Google Scholar 

  42. Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan. China JAMA. 2020;323(11):1061–9.

    Article  CAS  PubMed  Google Scholar 

  43. Patel VB, Mori J, McLean BA, et al. ACE2 deficiency worsens epicardial adipose tissue inflammation and cardiac dysfunction in response to diet-induced obesity. Diabetes. 2016;65(1):85–95.

    Article  CAS  PubMed  Google Scholar 

  44. Bihan H, Heidar R, Beloeuvre A, et al. Epicardial adipose tissue and severe coronavirus disease 19. Cardiovasc Diabetol. 2021;20(1):147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Iacobellis G, Malavazos AE, Basilico S, et al. Epicardial fat inflammation response to COVID-19 therapies. Obesity (Silver Spring). 2021;29(9):1427–33.

    Article  CAS  PubMed  Google Scholar 

  46. Grodecki K, Lin A, Razipour A, et al. Epicardial adipose tissue is associated with extent of pneumonia and adverse outcomes in patients with COVID-19. Metabolism. 2021;115:154436.

    Article  CAS  PubMed  Google Scholar 

  47. Packer M. Epicardial adipose tissue inflammation can cause the distinctive pattern of cardiovascular disorders seen in psoriasis. Am J Med. 2020;133(3):267–72.

    Article  CAS  PubMed  Google Scholar 

  48. Bakirci EM, Degirmenci H, Hamur H, Gunay M, Gulhan B, Aydin M, Kucuksu Z, Ceyhun G, Topal E. New inflammatory markers for prediction of non-dipper blood pressure pattern in patients with essential hypertension: serum YKL-40/chitinase 3-like protein 1 levels and echocardiographic epicardial adipose tissue thickness. Clin Exp Hypertens. 2015;37(6):505–10.

    Article  CAS  PubMed  Google Scholar 

  49. Austys D, Dobrovolskij A, Jablonskiene V, Dobrovolskij V, Valeviciene N, Stukas R. Epicardial adipose tissue accumulation and essential hypertension in non-obese adults. Medicina (Kaunas). 2019;55(8):456.

  50. Derya MA, Demir V, Ede H. Relationship between neutrophil/lymphocyte ratio and epicardial fat tissue thickness in patients with newly diagnosed hypertension. J Int Med Res. 2018;46(3):940–50.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kim YH, Jeong MK, Park H, Park SK. Effects of regular taekwondo intervention on health-related physical fitness, cardiovascular disease risk factors and epicardial adipose tissue in elderly women with hypertension. Int J Environ Res Public Health. 2021;18(6):2935.

  52. Salazar J, Luzardo E, Mejias JC, Rojas J, Ferreira A, Rivas-Rios JR, Bermudez V. Epicardial fat: physiological, pathological, and therapeutic implications. Cardiol Res Pract. 2016;2016:1291537.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Christensen RH, Wedell-Neergaard AS, Lehrskov LL, et al. Effect of aerobic and resistance exercise on cardiac adipose tissues: secondary analyses from a randomized clinical trial. JAMA Cardiol. 2019;4(8):778–87.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Chacinska M, Zabielski P, Ksiazek M, Szalaj P, Jarzabek K, Kojta I, Chabowski A, Blachnio-Zabielska AU. The impact of OMEGA-3 fatty acids supplementation on insulin resistance and content of adipocytokines and biologically active lipids in adipose tissue of high-fat diet fed rats. Nutrients. 2019;11(4):835.

  55. van Schinkel LD, Sleddering MA, Lips MA, Jonker JT, de Roos A, Lamb HJ, Jazet IM, Pijl H, Smit JW. Effects of bariatric surgery on pericardial ectopic fat depositions and cardiovascular function. Clin Endocrinol (Oxf). 2014;81(5):689–95.

    Article  PubMed  Google Scholar 

  56. Ziyrek M, Kahraman S, Ozdemir E, Dogan A. Metformin monotherapy significantly decreases epicardial adipose tissue thickness in newly diagnosed type 2 diabetes patients. Rev Port Cardiol (Engl Ed). 2019;38(6):419–23.

    Article  PubMed  Google Scholar 

  57. Sardu C, D’Onofrio N, Torella M, et al. Pericoronary fat inflammation and major adverse cardiac events (MACE) in prediabetic patients with acute myocardial infarction: effects of metformin. Cardiovasc Diabetol. 2019;18(1):126.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Iacobellis G, Mohseni M, Bianco SD, Banga PK. Liraglutide causes large and rapid epicardial fat reduction. Obesity (Silver Spring). 2017;25(2):311–6.

    Article  CAS  PubMed  Google Scholar 

  59. Sato T, Aizawa Y, Yuasa S, et al. The effect of dapagliflozin treatment on epicardial adipose tissue volume. Cardiovasc Diabetol. 2018;17(1):6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lima-Martinez MM, Paoli M, Rodney M, Balladares N, Contreras M, D’Marco L, Iacobellis G. Effect of sitagliptin on epicardial fat thickness in subjects with type 2 diabetes and obesity: a pilot study. Endocrine. 2016;51(3):448–55.

    Article  CAS  PubMed  Google Scholar 

  61. Braha A, Timar B, Diaconu L, et al. Dynamics of epicardiac fat and heart function in type 2 diabetic patients initiated with SGLT-2 inhibitors. Diabetes Metab Syndr Obes. 2019;12:2559–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Raggi P, Gadiyaram V, Zhang C, Chen Z, Lopaschuk G, Stillman AE. Statins reduce epicardial adipose tissue attenuation independent of lipid lowering: a potential pleiotropic effect. J Am Heart Assoc. 2019;8(12):e013104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Parisi V, Petraglia L, D’Esposito V, et al. Statin therapy modulates thickness and inflammatory profile of human epicardial adipose tissue. Int J Cardiol. 2019;274:326–30.

    Article  PubMed  Google Scholar 

  64. Launbo N, Zobel EH, von Scholten BJ, Faerch K, Jorgensen PG, Christensen RH. Targeting epicardial adipose tissue with exercise, diet, bariatric surgery or pharmaceutical interventions: a systematic review and meta-analysis. Obes Rev. 2021;22(1):e13136.

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants from the National Natural Science Foundation of China (82170245) and the Xinjiang Science and Technology Support Project (2018E02064).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Deng.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Associate Editor Nicola Smart oversaw the review of this article

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, W., Xie, S. & Deng, W. Epicardial Adipose Tissue: a Potential Therapeutic Target for Cardiovascular Diseases. J. of Cardiovasc. Trans. Res. 17, 322–333 (2024). https://doi.org/10.1007/s12265-023-10442-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-023-10442-1

Keywords

Navigation