Skip to main content

Advertisement

Log in

The Role of p90 Ribosomal S6 Kinase (RSK) in Tyrosine Kinase Inhibitor (TKI)-Induced Cardiotoxicity

  • Review
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Targeted therapy, such as tyrosine kinase inhibitors (TKIs), has been approved to manage various cancer types. However, TKI-induced cardiotoxicity is a limiting factor for their use. This issue has raised the need for investigating potential cardioprotective techniques to be combined with TKIs. Ribosomal S6-kinases (RSKs) are a downstream effector of the mitogen-activated-protein-kinase (MAPK) pathway; specific RSK isoforms, such as RSK1 and RSK2, have been expressed in cancer cells, in which they increase tumour proliferation. Selective targeting of those isoforms would result in tumour suppression. Moreover, activation of RSKs expressed in the heart has resulted in cardiac hypertrophy and arrhythmia; thus, inhibiting RSKs would result in cardio-protection. This review article presents an overview of the usefulness of RSK inhibitors that can be novel agents to be assessed in future research for their effect in reducing cancer proliferation, as well as protecting the heart from cardiotoxicity induced by TKIs.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ahmad FB, Anderson RN. The leading causes of death in the US for 2020. JAMA. 2021;325(18):1829–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Curigliano G, et al. Cardiotoxicity of anticancer treatments: epidemiology, detection, and management. CA Cancer J Clin. 2016;66(4):309–25.

    Article  PubMed  Google Scholar 

  3. Teske A, et al. Cardio-oncology: an overview on outpatient management and future developments. Neth Hear J. 2018;26(11):521–32.

    Article  CAS  Google Scholar 

  4. Wickramasinghe CD, et al. Concepts in cardio-oncology: definitions, mechanisms, diagnosis and treatment strategies of cancer therapy-induced cardiotoxicity. Future Oncol. 2016;12(6):855–70.

    Article  CAS  PubMed  Google Scholar 

  5. Han X, Zhou Y, Liu W. Precision cardio-oncology: understanding the cardiotoxicity of cancer therapy. NPJ Precis Oncol. 2017;1(1):1–11.

    CAS  Google Scholar 

  6. Zheng PP, Li J, Kros JM. Breakthroughs in modern cancer therapy and elusive cardiotoxicity: critical research-practice gaps, challenges, and insights. Med Res Rev. 2018;38(1):325–76.

    Article  CAS  PubMed  Google Scholar 

  7. Sheng CC, et al. 21st century cardio-oncology: identifying cardiac safety signals in the era of personalized medicine. JACC: Basic Transl Sci. 2016;1(5):386–98.

    PubMed  Google Scholar 

  8. Casalvieri KA, et al. Selective targeting of RSK isoforms in cancer. Trends Cancer. 2017;3(4):302–12.

    Article  CAS  PubMed  Google Scholar 

  9. Paul MK, Mukhopadhyay AK. Tyrosine kinase–role and significance in cancer. Int J Med Sci. 2004;1(2):101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gorini S, De Angelis A, Berrino L, Malara N, Rosano G,  Ferraro E. Chemotherapeutic drugs and mitochondrial dysfunction: focus on doxorubicin, trastuzumab, and sunitinib. Oxidat Med Cell Longev. 2018;2018:15. https://doi.org/10.1155/2018/7582730

  11. Chen MH, Kerkelä R, Force T. Mechanisms of cardiac dysfunction associated with tyrosine kinase inhibitor cancer therapeutics. Circ Res. 2008;118(1):84–95.

    Article  Google Scholar 

  12. Greineder CF, Kohnstamm S, Ky B. Heart failure associated with sunitinib: lessons learned from animal models. Curr Hypertens Rep. 2011;13(6):436–41.

    Article  CAS  PubMed  Google Scholar 

  13. Chaar M, Kamta J, Ait-Oudhia S. Mechanisms, monitoring, and management of tyrosine kinase inhibitors-associated cardiovascular toxicities. Onco Targets Ther. 2018;11:6227–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mulas O, et al. Arterial hypertension and tyrosine kinase inhibitors in chronic myeloid leukemia: a systematic review and meta-analysis. Front Pharmacol. 2021;12:674748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shyam Sunder S, Sharma UC, Pokharel S. Adverse effects of tyrosine kinase inhibitors in cancer therapy: pathophysiology, mechanisms and clinical management. Signal Transduct Target Ther. 2023;8(1):262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mercurio V, et al. Pulmonary hypertension induced by anticancer drugs. In: Russo A, et al., editors. Cardiovascular complications in cancer therapy. Cham: Springer International Publishing; 2019. p. 133–9.

    Chapter  Google Scholar 

  17. McMullen CJ, et al. Sunitinib and imatinib display differential cardiotoxicity in adult rat cardiac fibroblasts that involves a role for calcium/calmodulin dependent protein kinase II. Front Cardiovasc Med. 2020;7:630480.

    Article  CAS  PubMed  Google Scholar 

  18. Singh AP, et al. Ponatinib-induced cardiotoxicity: delineating the signalling mechanisms and potential rescue strategies. Cardiovasc Res. 2019;115(5):966–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Vallakati A, et al. Management of cancer therapeutics–related cardiac dysfunction. J Heart Fail Clin. 2018;14(4):553–67.

    Article  Google Scholar 

  20. Bloom MW, et al. Cancer therapy–related cardiac dysfunction and heart failure: part 1: definitions, pathophysiology, risk factors, and imaging. J Circ: Heart Fail. 2016;9(1):e002661.

    PubMed  Google Scholar 

  21. Koutsoukis A, et al. Cardio-oncology: a focus on cardiotoxicity. J Eur Cardiol Rev. 2018;13(1):64.

    Article  Google Scholar 

  22. Ewer S, Lippman SM. Type II chemotherapy-related cardiac dysfunction: time to recognize a new entity by Michael. J Clin Oncol. 2005;23:2900–2.

    Article  CAS  PubMed  Google Scholar 

  23. Ewer MS, et al. Reversibility of trastuzumab-related cardiotoxicity: new insights based on clinical course and response to medical treatment. J Clin Oncol. 2005;23(31):7820–6.

    Article  CAS  PubMed  Google Scholar 

  24. Larsen CM, Mulvagh SL. Cardio-oncology: what you need to know now for clinical practice and echocardiography. Echo Res. 2017;4(1):R33–41.

    Article  Google Scholar 

  25. Shah DR, Shah RR, Morganroth J. Tyrosine kinase inhibitors: their on-target toxicities as potential indicators of efficacy. Drug Saf. 2013;36(6):413–26.

    Article  CAS  PubMed  Google Scholar 

  26. Gupta R, Maitland ML. Sunitinib, hypertension, and heart failure: a model for kinase inhibitor-mediated cardiotoxicity. Curr Hypertens Rep. 2011;13(6):430–5.

    Article  CAS  PubMed  Google Scholar 

  27. Force T, Krause DS, Van Etten RA. Molecular mechanisms of cardiotoxicity of tyrosine kinase inhibition. Nat Rev Cancer. 2007;7(5):332–44.

    Article  CAS  PubMed  Google Scholar 

  28. Anjum R, Blenis J. The RSK family of kinases: emerging roles in cellular signalling. Nat Rev Mol Cell Biol. 2008;9(10):747–58.

    Article  CAS  PubMed  Google Scholar 

  29. Houles T, Roux PP. Defining the role of the RSK isoforms. in cancer in Seminars in cancer biology. Elsevier; 2018.

    Google Scholar 

  30. Romeo Y, Zhang X, Roux PP. Regulation and function of the RSK family of protein kinases. Biochem J. 2012;441(2):553–69.

    Article  CAS  PubMed  Google Scholar 

  31. Carrière A, et al. Oncogenic MAPK signaling stimulates mTORC1 activity by promoting RSK-mediated raptor phosphorylation. Curr Biol. 2008;18(17):1269–77.

    Article  PubMed  Google Scholar 

  32. Sears R, et al. Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes. 2000;14(19):2501–14.

    Article  CAS  Google Scholar 

  33. Shahbazian D, et al. The mTOR/PI3K and MAPK pathways converge on eIF4B to control its phosphorylation and activity. EMBO J. 2006;25(12):2781–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Anjum R, et al. The tumor suppressor DAP kinase is a target of RSK-mediated survival signaling. Curr Biol. 2005;15(19):1762–7.

    Article  CAS  PubMed  Google Scholar 

  35. Bonni A, et al. Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and-independent mechanisms. Science. 1999;286(5443):1358–62.

    Article  CAS  PubMed  Google Scholar 

  36. Fujita N, Sato S, Tsuruo T. Phosphorylation of p27Kip1 at threonine 198 by p90 ribosomal protein S6 kinases promotes its binding to 14-3-3 and cytoplasmic localization. J Biol Chem. 2003;278(49):49254–60.

    Article  CAS  PubMed  Google Scholar 

  37. David J-P, et al. Essential role of RSK2 in c-Fos–dependent osteosarcoma development. J Clin Investig. 2005;115(3):664–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Diehl JA, et al. Glycogen synthase kinase-3β regulates cyclin D1 proteolysis and subcellular localization. Genes Dev. 1998;12(22):3499–511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sears R, et al. Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes Dev. 2000;14(19):2501–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chen R-H, et al. Phosphorylation of c-Fos at the C-terminus enhances its transforming activity. Oncogene. 1996;12(7):1493–502.

    CAS  PubMed  Google Scholar 

  41. Murphy LO, et al. Molecular interpretation of ERK signal duration by immediate early gene products. Nat Cell Biol. 2002;4(8):556–64.

    Article  CAS  PubMed  Google Scholar 

  42. Larrea MD, et al. RSK1 drives p27Kip1 phosphorylation at T198 to promote RhoA inhibition and increase cell motility. Proc Natl Acad Sci. 2009;106(23):9268–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wu CF, et al. RSK promotes G2/M transition through activating phosphorylation of Cdc25A and Cdc25B. Oncogene. 2014;33(18):2385–94.

    Article  CAS  PubMed  Google Scholar 

  44. Zhu J, Blenis J, Yuan J. Activation of PI3K/Akt and MAPK pathways regulates Myc-mediated transcription by phosphorylating and promoting the degradation of Mad1. Proc Natl Acad Sci. 2008;105(18):6584–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Brüning JC, et al. Ribosomal subunit kinase-2 is required for growth factor-stimulated transcription of the c-Fos gene. Proc Natl Acad Sci. 2000;97(6):2462–7.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Nandagopal N, Roux PP. Regulation of global and specific mRNA translation by the mTOR signaling pathway. Translation. 2015;3(1):e983402.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Rolfe M, et al. Activation of protein synthesis in cardiomyocytes by the hypertrophic agent phenylephrine requires the activation of ERK and involves phosphorylation of tuberous sclerosis complex 2 (TSC2). Biochem J. 2005;388(3):973–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Roux PP, et al. Tumor-promoting phorbol esters and activated Ras inactivate the tuberous sclerosis tumor suppressor complex via p90 ribosomal S6 kinase. Proc Natl Acad Sci. 2004;101(37):13489–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang X, et al. Evidence that the dephosphorylation of Ser535 in the∊-subunit of eukaryotic initiation factor (eIF) 2B is insufficient for the activation of eIF2B by insulin. Biochem J. 2002;367(2):475–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shahbazian D, et al. Control of cell survival and proliferation by mammalian eukaryotic initiation factor 4B. Mol Cell Biol. 2010;30(6):1478–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Galan JA, et al. Phosphoproteomic analysis identifies the tumor suppressor PDCD4 as a RSK substrate negatively regulated by 14-3-3. Proc Natl Acad Sci. 2014;111(29):E2918–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cuesta R, Holz MK. RSK-mediated down-regulation of PDCD4 is required for proliferation, survival, and migration in a model of triple-negative breast cancer. Oncotarget. 2016;7(19):27567.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Roux PP, et al. RAS/ERK signaling promotes site-specific ribosomal protein S6 phosphorylation via RSK and stimulates cap-dependent translation. J Biol Chem. 2007;282(19):14056–64.

    Article  CAS  PubMed  Google Scholar 

  54. Bonni A, et al. Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science. 1999;286(5443):1358–62.

    Article  CAS  PubMed  Google Scholar 

  55. Shimamura A, et al. Rsk1 mediates a MEK–MAP kinase cell survival signal. Curr Biol. 2000;10(3):127–35.

    Article  CAS  PubMed  Google Scholar 

  56. Bialik S, Kimchi A. DAP-kinase as a target for drug design in cancer and diseases associated with accelerated cell death. in Seminars in cancer biology. Elsevier; 2004.

    Google Scholar 

  57. Buck M, et al. C/EBPβ phosphorylation by RSK creates a functional XEXD caspase inhibitory box critical for cell survival. Mol Cell. 2001;8(4):807–16.

    Article  CAS  PubMed  Google Scholar 

  58. Xing J, Ginty DD, Greenberg ME. Coupling of the RAS-MAPK pathway to gene activation by RSK2, a growth factor-regulated CREB kinase. Science. 1996;273(5277):959–63.

    Article  CAS  PubMed  Google Scholar 

  59. Doehn U, et al. RSK is a principal effector of the RAS-ERK pathway for eliciting a coordinate promotile/invasive gene program and phenotype in epithelial cells. Mol Cell. 2009;35(4):511–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gawecka JE, et al. RSK2 protein suppresses integrin activation and fibronectin matrix assembly and promotes cell migration. J Biol Chem. 2012;287(52):43424–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Woo MS, et al. Ribosomal S6 kinase (RSK) regulates phosphorylation of filamin A on an important regulatory site. Mol Cell Biol. 2004;24(7):3025–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Tanimura S, et al. SH3P2 is a negative regulator of cell motility whose function is inhibited by ribosomal S6 kinase-mediated phosphorylation. Genes Cells. 2011;16(5):514–26.

    Article  CAS  PubMed  Google Scholar 

  63. Chen C, et al. Suppression of DNA-damage checkpoint signaling by Rsk-mediated phosphorylation of Mre11. Proc Natl Acad Sci. 2013;110(51):20605–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ray-David H, et al. RSK promotes G2 DNA damage checkpoint silencing and participates in melanoma chemoresistance. Oncogene. 2013;32(38):4480–9.

    Article  CAS  PubMed  Google Scholar 

  65. Ludwik KA, et al. Development of a RSK inhibitor as a novel therapy for triple-negative breast cancer. Mol Cancer Ther. 2016;15(11):2598–608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kosnopfel C, et al. Inhibition of p90 ribosomal S6 kinases disrupts melanoma cell growth and immune evasion. J Exp Clin Cancer Res. 2023;42(1):175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Takeishi Y, et al. Activation of mitogen-activated protein kinases and p90 ribosomal S6 kinase in failing human hearts with dilated cardiomyopathy. Cardiovasc Res. 2002;53(1):131–7.

    Article  CAS  PubMed  Google Scholar 

  68. Takeishi Y, et al. Differential regulation of p90 ribosomal S6 kinase and big mitogen–activated protein kinase 1 by ischemia/reperfusion and oxidative stress in perfused guinea pig hearts. Circ Res. 1999;85(12):1164–72.

    Article  CAS  PubMed  Google Scholar 

  69. Jaballah M, et al. Na+/H+ exchanger isoform 1 induced cardiomyocyte hypertrophy involves activation of p90 ribosomal s6 kinase. PLoS ONE. 2015;10(4):e0122230.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Xue J, et al. Elevated myocardial Na+/H+ exchanger isoform 1 activity elicits gene expression that leads to cardiac hypertrophy. Physiol Genom. 2010;42(3):374–83.

    Article  CAS  Google Scholar 

  71. Lin L, White SA, Hu K. Role of p90RSK in kidney and other diseases. Int J Mol Sci. 2019;20(4):972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mentzer RM Jr, et al. Sodium-hydrogen exchange inhibition by cariporide to reduce the risk of ischemic cardiac events in patients undergoing coronary artery bypass grafting: results of the EXPEDITION study. Ann Thorac Surg. 2008;85(4):1261–70.

    Article  PubMed  Google Scholar 

  73. Amirak E, et al. p90 Ribosomal S6 kinases play a significant role in early gene regulation in the cardiomyocyte response to Gq-protein-coupled receptor stimuli, endothelin-1 and α1-adrenergic receptor agonists. Biochem J. 2013;450(2):351–63.

    Article  CAS  PubMed  Google Scholar 

  74. Yamaguchi N, et al. Dysfunctional ryanodine receptor and cardiac hypertrophy: role of signaling molecules. Am J Physiol-Heart. 2011;300(6):H2187–95.

    Article  CAS  Google Scholar 

  75. He Q, et al. PKA, Rap1, ERK1/2, and p90RSK mediate PGE2 and EP4 signaling in neonatal ventricular myocytes. Am J Physiol-Heart. 2010;298(1):H136–43.

    Article  CAS  Google Scholar 

  76. Lu Z, et al. Reactive oxygen species-induced activation of p90 ribosomal S6 kinase prolongs cardiac repolarization through inhibiting outward K+ channel activity. Circ Res. 2008;103(3):269–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Le N-T, et al. Flow signaling and atherosclerosis. Cell Mol Life Sci. 2017;74(10):1835–58.

    Article  CAS  PubMed  Google Scholar 

  78. Li J, et al. Anchored p90 ribosomal S6 kinase 3 is required for cardiac myocyte hypertrophy. Circ Res. 2013;112(1):128–39.

    Article  CAS  PubMed  Google Scholar 

  79. Paez-Mayorga J, et al. Ponatinib activates an inflammatory response in endothelial cells via ERK5 SUMOylation. Front Cardiovasc Med. 2018;5:125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Uitdehaag JC, et al. Comparison of the cancer gene targeting and biochemical selectivities of all targeted kinase inhibitors approved for clinical use. PLoS One. 2014;9(3):e92146.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Karaman MW, et al. A quantitative analysis of kinase inhibitor selectivity. Nat Biotechnol. 2008;26(1):127–32.

    Article  CAS  PubMed  Google Scholar 

  82. Hasinoff BB, Patel D, O’Hara KA. Mechanisms of myocyte cytotoxicity induced by the multiple receptor tyrosine kinase inhibitor sunitinib. Mol Pharmacol. 2008;74(6):1722–8.

    Article  CAS  PubMed  Google Scholar 

  83. Yang WS, et al. RSK1 and RSK2 serine/threonine kinases regulate different transcription programs in cancer. Front Cell Dev Biol. 2022;10:1015665.

    Article  PubMed  Google Scholar 

  84. Cargnello M, Roux PP. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev. 2011;75(1):50–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhang L, et al. In vivo antitumor and antimetastatic activity of sunitinib in preclinical neuroblastoma mouse model. Neoplasia. 2009;11(5):426–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kerkela R, et al. Sunitinib-induced cardiotoxicity is mediated by off-target inhibition of AMP-activated protein kinase. Clin Transl Sci. 2009;2(1):15–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Deng L, et al. Luteolin, a novel p90 ribosomal S6 kinase inhibitor, suppresses proliferation and migration in leukemia cells. Oncol Lett. 2017;13(3):1370–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Suleiman M. The role of p90 ribosomal s6 kinase and autophagy in sunitinib and ponatinib-induced cardiotoxicity. 2019. Master's thesis.

  89. Martinez EC, et al. RSK3: a regulator of pathological cardiac remodeling. IUBMB Life. 2015;67(5):331–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hurtado-de-Mendoza D, Loaiza-Bonilla A, Bonilla-Reyes PA, Tinoco G, Alcorta R. Cardio-oncology: cancer therapy-related cardiovascular complications in a molecular targeted era: new concepts and perspectives. Cureus. 2017;9(5).

  91. Aparicio-Gallego G, et al. New insights into molecular mechanisms of sunitinib-associated side effects. Mol Cancer Ther. 2011;10(12):2215–23.

    Article  CAS  PubMed  Google Scholar 

  92. Motzer RJ, et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med. 2007;356(2):115–24.

    Article  CAS  PubMed  Google Scholar 

  93. Graves A, Hessamodini H, Wong G, Lim WH. Metastatic renal cell carcinoma: update on epidemiology, genetics, and therapeutic modalities. ImmunoTargets and Therapy. 2013;73–90.

  94. Sayed-Ahmed MM, et al. Carnitine supplementation attenuates sunitinib-induced inhibition of amp-activated protein kinase downstream signals in cardiac tissues. Cardiovasc Toxicol. 2019;19(4):344–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hao Z, Sadek I. Sunitinib: the antiangiogenic effects and beyond. OncoTargets. 2016;9:5495.

    Article  CAS  Google Scholar 

  96. Faivre S, et al. Molecular basis for sunitinib efficacy and future clinical development. Nat Rev Drug Discov. 2007;6(9):734–45.

    Article  CAS  PubMed  Google Scholar 

  97. Rossari F, et al. Past, present, and future of Bcr-Abl inhibitors: from chemical development to clinical efficacy. J Hematol. 2018;11(1):1–14.

    Google Scholar 

  98. Pophali PA, Patnaik MM. The role of new tyrosine kinase inhibitors in chronic myeloid leukemia. Cancer J. 2016;22(1):40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Tan FH, et al. Ponatinib: a novel multi-tyrosine kinase inhibitor against human malignancies. OncoTargets. 2019;12:635.

    Article  CAS  Google Scholar 

  100. Huang W-S, et al. Discovery of 3-[2-(imidazo [1, 2-b] pyridazin-3-yl) ethynyl]-4-methyl-N-{4-[(4-methylpiperazin-1-yl) methyl]-3-(trifluoromethyl) phenyl} benzamide (AP24534), a potent, orally active pan-inhibitor of breakpoint cluster region-abelson (BCR-ABL) kinase including the T315I gatekeeper mutant. J Med Chem. 2010;53(12):4701–19.

    Article  CAS  PubMed  Google Scholar 

  101. Dao K-HT, Tyner JW. Next-generation medicine: combining BCR-ABL and Hedgehog-targeted therapies. Clin Cancer Res. 2013;19(6):1309–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Sandhu H, et al. Attenuation of sunitinib-induced cardiotoxicity through the A3 adenosine receptor activation. Eur J Pharmacol. 2017;814:95–105.

    Article  CAS  PubMed  Google Scholar 

  103. Lara R, Seckl MJ, Pardo OE. The p90 RSK family members: common functions and isoform specificity. Can Res. 2013;73(17):5301–8.

    Article  CAS  Google Scholar 

  104. Sulzmaier FJ, Ramos JW. RSK isoforms in cancer cell invasion and metastasis. Can Res. 2013;73(20):6099–105.

    Article  CAS  Google Scholar 

  105. Woo MS, et al. Ribosomal S6 kinase (RSK) regulates phosphorylation of filamin A on an important regulatory site. Mol Cell Biol. 2004;24(7):3025–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Gawecka JE, et al. RSK2 protein suppresses integrin activation and fibronectin matrix assembly and promotes cell migration. Mol Cell Biol. 2012;287(52):43424–37.

    CAS  Google Scholar 

  107. Abdulrahman N, et al. Inhibition of p90 ribosomal S6 kinase attenuates cell migration and proliferation of the human lung adenocarcinoma through phospho-GSK-3β and osteopontin. Mol Cell Biochem. 2016;418(1–2):21–9.

    Article  CAS  PubMed  Google Scholar 

  108. Poomakkoth N, et al. p90 ribosomal S6 kinase: a potential therapeutic target in lung cancer. J Transl Med. 2016;14:14.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Mendoza MC, Er EE, Blenis J. The Ras-ERK and PI3K-mTOR pathways: crosstalk and compensation. Trends Biochem Sci. 2011;36(6):320–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Hartmann S, Ridley AJ, Lutz S. The function of rho-associated kinases ROCK1 and ROCK2 in the pathogenesis of cardiovascular disease. Front Pharmacol. 2015;6:276.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatima Mraiche.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Associate Editor Yihua Bei oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suleiman, M., Al Najjar, A., Zakaria, Z.Z. et al. The Role of p90 Ribosomal S6 Kinase (RSK) in Tyrosine Kinase Inhibitor (TKI)-Induced Cardiotoxicity. J. of Cardiovasc. Trans. Res. 17, 334–344 (2024). https://doi.org/10.1007/s12265-023-10431-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-023-10431-4

Keywords

Navigation