Skip to main content

Advertisement

Log in

Inhibition of lncRNA DANCR Prevents Heart Failure by Ameliorating Cardiac Hypertrophy and Fibrosis Via Regulation of the miR-758-3p/PRG4/Smad Axis

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

The current work was developed to explore the functions and possible mechanism of PRG4 in cardiac hypertrophy and heart failure. Ang II-stimulated H9c2 cells and AC16 cells were used as in vitro cell models. The binding relation between genes in cells was explored using luciferase reporter assays and RNA immunoprecipitation assay. The cardiac functions of rats received transverse-ascending aortic constriction (TAC) surgery and adeno-associated virus (AAV) injection were examined with echocardiography. The myocardial histological changes were observed using H&E, wheat germ agglutinin, and sirius red staining. It was discovered that PRG4 silencing attenuated cell hypertrophy and fibrosis and inactivated the Smad pathway under Ang II treatment. PRG4 was targeted by miR-758-3p, and miR-758-3p interacted with long noncoding RNA DANCR. DANCR silencing inhibited cardiac dysfunction, fibrosis, and TGFβ1/Smad pathway. In addition, DANCR was highly expressed in myocardial extracellular vesicles. Overall, DANCR depletion prevents heart failure by inhibiting cardiac hypertrophy and fibrosis via the miR-758-3p/PRG4/Smad pathway.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included either in this article or in the supplementary information.

References

  1. Vaidya, Y., S. Riaz, and A.S. Dhamoon, Left ventricular assist devices, in StatPearls. 2023, StatPearls Publishing Copyright © 2023, StatPearls Publishing LLC.: Treasure Island (FL) ineligible companies. Disclosure: Sana Riaz declares no relevant financial relationships with ineligible companies. Disclosure: Amit Dhamoon declares no relevant financial relationships with ineligible companies.

  2. Meijers WC, de Boer RA. Common risk factors for heart failure and cancer. Cardiovasc Res. 2019;115(5):844–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Funamoto M, et al. Roles of histone acetylation sites in cardiac hypertrophy and heart failure. Front Cardiovasc Med. 2023;10:1133611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mouton AJ, et al. Interaction of obesity and hypertension on cardiac metabolic remodeling and survival following myocardial infarction. J Am Heart Assoc. 2021;10(6):e018212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Funamoto, M., et al., Pyrazole-curcumin suppresses cardiomyocyte hypertrophy by disrupting the CDK9/CyclinT1 complex. Pharmaceutics, 2022; 14(6).

  6. Zhang Q, et al. Long noncoding RNA MAGI1-IT1 regulates cardiac hypertrophy by modulating miR-302e/DKK1/Wnt/beta-catenin signaling pathway. J Cell Physiol. 2020;235(1):245–53.

    Article  CAS  PubMed  Google Scholar 

  7. Zhang J, et al. Neohesperidin inhibits cardiac remodeling induced by Ang II in vivo and in vitro. Biomed Pharmacother. 2020;129:110364.

    Article  CAS  PubMed  Google Scholar 

  8. Chen X, et al. Dapagliflozin attenuates myocardial fibrosis by inhibiting the TGF-β1/Smad signaling pathway in a normoglycemic rabbit model of chronic heart failure. Front Pharmacol. 2022;13:873108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Venugopal, H., et al., Properties and functions of fibroblasts and myofibroblasts in myocardial infarction. Cells, 2022; 11(9).

  10. Huang S, et al. Distinct roles of myofibroblast-specific Smad2 and Smad3 signaling in repair and remodeling of the infarcted heart. J Mol Cell Cardiol. 2019;132:84–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zheng QN, et al. QiShenYiQi Pills(®) ameliorates ischemia/reperfusion-induced myocardial fibrosis involving RP S19-mediated TGFβ1/Smads signaling pathway. Pharmacol Res. 2019;146:104272.

    Article  PubMed  Google Scholar 

  12. Solakyildirim K, et al. Proteoglycan 4 (lubricin) is a highly sialylated glycoprotein associated with cardiac valve damage in animal models of infective endocarditis. Glycobiology. 2021;31(11):1582–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Seime, T., et al., Proteoglycan 4 modulates osteogenic smooth muscle cell differentiation during vascular remodeling and intimal calcification. Cells, 2021; 10(6).

  14. Jiang XY, Ning QL. Expression profiling of long noncoding RNAs and the dynamic changes of lncRNA-NR024118 and Cdkn1c in angiotensin II-treated cardiac fibroblasts. Int J Clin Exp Pathol. 2014;7(4):1325–36.

    PubMed  PubMed Central  Google Scholar 

  15. Artiach, G., et al., Proteoglycan 4 is increased in human calcified aortic valves and enhances valvular interstitial cell calcification. Cells, 2020; 9(3).

  16. Park DSJ, et al. Human pericardial proteoglycan 4 (lubricin): implications for postcardiotomy intrathoracic adhesion formation. J Thorac Cardiovasc Surg. 2018;156(4):1598-1608.e1.

    Article  PubMed  Google Scholar 

  17. Sawada K, et al. Antiseptic solutions modulate the paracrine-like activity of bone chips: differential impact of chlorhexidine and sodium hypochlorite. J Clin Periodontol. 2015;42(9):883–91.

    Article  CAS  PubMed  Google Scholar 

  18. Schmidt TA, et al. Differential regulation of proteoglycan 4 metabolism in cartilage by IL-1alpha, IGF-I, and TGF-beta1. Osteoarthr Cartil. 2008;16(1):90–7.

    Article  CAS  Google Scholar 

  19. Thomson DW, Dinger ME. Endogenous microRNA sponges: evidence and controversy. Nat Rev Genet. 2016;17(5):272–83.

    Article  CAS  PubMed  Google Scholar 

  20. Li Y, et al. Noncoding RNAs in cardiac hypertrophy. J Cardiovasc Transl Res. 2018;11(6):439–49.

    Article  PubMed  Google Scholar 

  21. Zhu L, et al. Non-coding RNAs: the key detectors and regulators in cardiovascular disease. Genomics. 2021;113(1 Pt 2):1233–46.

    Article  CAS  PubMed  Google Scholar 

  22. Yang L, et al. Ablation of lncRNA Miat attenuates pathological hypertrophy and heart failure. Theranostics. 2021;11(16):7995–8007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cai B, et al. Long noncoding RNA-DACH1 (Dachshund Homolog 1) regulates cardiac function by inhibiting SERCA2a (sarcoplasmic reticulum calcium ATPase 2a). Hypertension. 2019;74(4):833–42.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang M, et al. LncRNA DANCR attenuates brain microvascular endothelial cell damage induced by oxygen-glucose deprivation through regulating of miR-33a-5p/XBP1s. Aging (Albany NY). 2020;12(2):1778–91.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang Z, et al. Emerging role of lncRNA DANCR in progenitor cells: beyond cancer. Eur Rev Med Pharmacol Sci. 2021;25(3):1399–409.

    CAS  PubMed  Google Scholar 

  26. Li J, et al. Mir-30d regulates cardiac remodeling by intracellular and paracrine signaling. Circ Res. 2021;128(1):e1–23.

    Article  CAS  PubMed  Google Scholar 

  27. McGeary, S.E., et al., The biochemical basis of microRNA targeting efficacy. Science, 2019; 366(6472).

  28. Li JH, et al. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 2014;42(Database issue):D92-7.

    Article  CAS  PubMed  Google Scholar 

  29. Chen Y, Wang X. miRDB: an online database for prediction of functional microRNA targets. Nucleic Acids Res. 2020;48(D1):D127-d131.

    Article  CAS  PubMed  Google Scholar 

  30. Xiao L, et al. The long noncoding RNA XIST regulates cardiac hypertrophy by targeting miR-101. J Cell Physiol. 2019;234(8):13680–92.

    Article  CAS  PubMed  Google Scholar 

  31. Wei Q, et al. Long noncoding RNA NEAT1 promotes myocardiocyte apoptosis and suppresses proliferation through regulation of miR-129-5p. J Cardiovasc Pharmacol. 2019;74(6):535–41.

    Article  CAS  PubMed  Google Scholar 

  32. Forrester SJ, et al. Angiotensin II signal transduction: an update on mechanisms of physiology and pathophysiology. Physiol Rev. 2018;98(3):1627–738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mehta PK, Griendling KK. Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am J Physiol Cell Physiol. 2007;292(1):C82-97.

    Article  CAS  PubMed  Google Scholar 

  34. Ye S, et al. Celastrol attenuates angiotensin II-induced cardiac remodeling by targeting STAT3. Circ Res. 2020;126(8):1007–23.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang M, et al. Contractile function during angiotensin-II activation: increased Nox2 activity modulates cardiac calcium handling via phospholamban phosphorylation. J Am Coll Cardiol. 2015;66(3):261–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mann S, et al. Effects of acute angiotensin II on ischemia reperfusion injury following myocardial infarction. J Renin Angiotensin Aldosterone Syst. 2015;16(1):13–22.

    Article  CAS  PubMed  Google Scholar 

  37. Veselka J, Anavekar NS, Charron P. Hypertrophic obstructive cardiomyopathy. Lancet. 2017;389(10075):1253–67.

    Article  PubMed  Google Scholar 

  38. Song, C., et al., Inhibition of lncRNA Gm15834 attenuates autophagy-mediated myocardial hypertrophy via the miR-30b-3p/ULK1 axis in mice. Mol Ther, 2020.

  39. Fernández-Ruiz I. H19 in cardiac hypertrophy. Nat Rev Cardiol. 2020;17(10):612.

    Article  PubMed  Google Scholar 

  40. Wang D, et al. Up-regulation of SNHG16 induced by CTCF accelerates cardiac hypertrophy by targeting miR-182-5p/IGF1 axis. Cell Biol Int. 2020;44(7):1426–35.

    Article  PubMed  Google Scholar 

  41. Zhang XH, et al. LncRNA DANCR-miR-758-3p-PAX6 molecular network regulates apoptosis and autophagy of breast cancer cells. Cancer Manag Res. 2020;12:4073–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang S, Jiang M. The long non-coding RNA-DANCR exerts oncogenic functions in non-small cell lung cancer via miR-758-3p. Biomed Pharmacother. 2018;103:94–100.

    Article  CAS  PubMed  Google Scholar 

  43. Yao Y, et al. Let-7f regulates the hypoxic response in cerebral ischemia by targeting NDRG3. Neurochem Res. 2017;42(2):446–54.

    Article  CAS  PubMed  Google Scholar 

  44. Wang L, et al. Inhibitory effects of PRG4 on migration and proliferation of human venous cells. J Surg Res. 2020;253:53–62.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Qianwen Huang was the main designer of this study. Qianwen Huang and Qian Huang performed the experiments and analyzed the data. Qianwen Huang and Qian Huang drafted the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Qian Huang.

Ethics declarations

Ethical Approval

The protocol of in vivo assays was in approval of the ethics committee of Quanzhou Medical College and was performed following The Guide for the Care and Use of Laboratory Animals (National Institutes of Health, USA).

Conflict of Interest

The authors declare no competing interests.

Additional information

Associate Editor Guoping Li oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 23 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Q., Huang, Q. Inhibition of lncRNA DANCR Prevents Heart Failure by Ameliorating Cardiac Hypertrophy and Fibrosis Via Regulation of the miR-758-3p/PRG4/Smad Axis. J. of Cardiovasc. Trans. Res. 16, 1357–1372 (2023). https://doi.org/10.1007/s12265-023-10428-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-023-10428-z

Keywords

Navigation