Skip to main content
Log in

Protectin D1 Alleviates Myocardial Ischemia/Reperfusion Injury by Regulating PI3K/AKT Signaling Pathway

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Myocardial ischemia/reperfusion (I/R) injury after the onset of acute myocardial infarction (AMI) can be life-threatening, and there is no effective strategy for therapeutic intervention. Here, we studied the potential of protectin D1 in protecting from I/R-induced cardiac damages and investigated the underlying mechanisms. An in vivo rat model of I/R after AMI induction was established through the ligation of the left anterior descending (LAD) artery to assess the cardiac functions and evaluate the protective effect of protectin D1. Protectin D1 protected against I/R-induced oxidative stress and inflammation in the rat model, improved the cardiac function, and reduced the infarct size in myocardial tissues. The beneficial effect of protectin D1 was associated with the up-regulation of miRNA-210 and the effects on PI3K/AKT signaling and HIF-1α expression. Together, our data suggest that protectin D1 could serve as a potential cardioprotective agent against I/R-associated cardiac defects.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data presented in this study are available upon e-mail request from the corresponding author.

References

  1. Reed GW, Rossi JE, Cannon CP. Acute myocardial infarction. Lancet. 2017;389(10065):197–210. https://doi.org/10.1016/S0140-6736(16)30677-8.

    Article  PubMed  Google Scholar 

  2. Hajduk AM, Saczynski JS, Tsang S, Geda ME, Dodson JA, Ouellet GM, Goldberg RJ, Chaudhry SI. Presentation, treatment, and outcomes of older adults hospitalized for acute myocardial infarction according to cognitive status: the SILVER-AMI study. Am J Med. 2021;134(7):910–7.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Damluji AA, Huang J, Bandeen-Roche K, Forman DE, Gerstenblith G, Moscucci M, Resar JR, Varadhan R, Walston JD, Segal JB. Frailty among older adults with acute myocardial infarction and outcomes from percutaneous coronary interventions. J Am Heart Assoc. 2019;8(17):e013686.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Nishihira K, Yoshioka G, Kuriyama N, Ogata K, Kimura T, Matsuura H, Furugen M, Koiwaya H, Watanabe N, Shibata Y. Impact of frailty on outcomes in elderly patients with acute myocardial infarction who undergo percutaneous coronary intervention. Eur Heart J Qual Care Clin Outcomes. 2021;7(2):189–97.

    Article  PubMed  Google Scholar 

  5. Del Buono MG, Moroni F, Montone RA, Azzalini L, Sanna T, Abbate A. Ischemic cardiomyopathy and heart failure after acute myocardial infarction. Curr Cardiol Rep. 2022;24(10):1505–15.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Du X, Spatz ES, Dreyer RP, Hu S, Wu C, Li X, Li J, Wang S, Masoudi FA, Spertus JA, Nasir K, Krumholz HM, Jiang L, China PEACE Collaborative Group. Sex differences in clinical profiles and quality of care among patients with ST-segment elevation myocardial infarction from 2001 to 2011: insights from the China Patient-Centered Evaluative Assessment of Cardiac Events (PEACE)-retrospective study. J Am Heart Assoc. 2016;5(2):e002157.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Heusch G, Gersh BJ. The pathophysiology of acute myocardial infarction and strategies of protection beyond reperfusion: a continual challenge. Eur Heart J. 2017;38(11):774–84.

    CAS  PubMed  Google Scholar 

  8. Anderson JL, Morrow DA. Acute myocardial infarction. N Engl J Med. 2017;376(21):2053–64.

    Article  CAS  PubMed  Google Scholar 

  9. Thiele H, Akin I, Sandri M, Fuernau G, de Waha S, Meyer-Saraei R, Nordbeck P, Geisler T, Landmesser U, Skurk C, Fach A, Lapp H, Piek JJ, Noc M, Goslar T, Felix SB, Maier LS, Stepinska J, Oldroyd K, et al. CULPRIT-SHOCK Investigators. PCI strategies in patients with acute myocardial infarction and cardiogenic shock. N Engl J Med. 2017;377(25):2419–32.

    Article  PubMed  Google Scholar 

  10. Yousuf T, Nakhle A, Rawal H, Harrison D, Maini R, Irimpen A. Natural disasters and acute myocardial infarction. Prog Cardiovasc Dis. 2020;63(4):510–7.

    Article  PubMed  Google Scholar 

  11. Li Y, Liang P, Jiang B, Tang Y, Lv Q, Hao H, Liu Z, Xiao X. CARD9 inhibits mitochondria-dependent apoptosis of cardiomyocytes under oxidative stress via interacting with Apaf-1. Free Radic Biol Med. 2019;141:172–81.

    Article  CAS  PubMed  Google Scholar 

  12. Del Re DP, Amgalan D, Linkermann A, Liu Q, Kitsis RN. Fundamental mechanisms of regulated cell death and implications for heart disease. Physiol Rev. 2019;99(4):1765–817.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Liu J, Wang H, Li J. Inflammation and inflammatory cells in myocardial infarction and reperfusion injury: a double-edged sword. Clin Med Insights Cardiol. 2016;10:79–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kurian GA, Rajagopal R, Vedantham S, Rajesh M. The role of oxidative stress in myocardial ischemia and reperfusion injury and remodeling: revisited. Oxid Med Cell Longev. 2016;2016:1656450.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, Squadrito F, Altavilla D, Bitto A. Oxidative stress: harms and benefits for human health. Oxid Med Cell Longev. 2017;2017:8416763.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zweier JL, Talukder MA. The role of oxidants and free radicals in reperfusion injury. Cardiovasc Res. 2006;70(2):181–90.

    Article  CAS  PubMed  Google Scholar 

  17. Moris D, Spartalis M, Tzatzaki E, Spartalis E, Karachaliou GS, Triantafyllis AS, Karaolanis GI, Tsilimigras DI, Theocharis S. The role of reactive oxygen species in myocardial redox signaling and regulation. Ann Transl Med. 2017;5(16):324.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Puhl SL, Steffens S. Neutrophils in post-myocardial infarction inflammation: damage vs resolution? Front Cardiovasc Med. 2019;6:25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xu ZZ, Liu XJ, Berta T, Park CK, Lü N, Serhan CN, Ji RR. Neuroprotectin/protectin D1 protects against neuropathic pain in mice after nerve trauma. Ann Neurol. 2013;74(3):490–5. https://doi.org/10.1002/ana.23928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li X, Li C, Liang W, Bi Y, Chen M, Dong S. Protectin D1 promotes resolution of inflammation in a murine model of lipopolysaccharide-induced acute lung injury via enhancing neutrophil apoptosis. Chin Med J. 2014;127(5):810–4.

    Article  CAS  PubMed  Google Scholar 

  21. Frigerio F, Pasqualini G, Craparotta I, Marchini S, van Vliet EA, Foerch P, Vandenplas C, Leclercq K, Aronica E, Porcu L, Pistorius K, Colas RA, Hansen TV, Perretti M, Kaminski RM, Dalli J, Vezzani A. n-3 Docosapentaenoic acid-derived protectin D1 promotes resolution of neuroinflammation and arrests epileptogenesis. Brain. 2018;141(11):3130–43.

    PubMed  PubMed Central  Google Scholar 

  22. Belayev L, Mukherjee PK, Balaszczuk V, Calandria JM, Obenaus A, Khoutorova L, Hong SH, Bazan NG. Neuroprotectin D1 upregulates Iduna expression and provides protection in cellular uncompensated oxidative stress and in experimental ischemic stroke. Cell Death Differ. 2017;24(6):1091–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Asatryan A, Bazan NG. Molecular mechanisms of signaling via the docosanoid neuroprotectin D1 for cellular homeostasis and neuroprotection. J Biol Chem. 2017;292(30):12390–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gao E, Lei YH, Shang X, Huang ZM, Zuo L, Boucher M, Fan Q, Chuprun JK, Ma XL, Koch WJ. A novel and efficient model of coronary artery ligation and myocardial infarction in the mouse. Circ Res. 2010;107(12):1445–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gao E, Koch WJ. A novel and efficient model of coronary artery ligation in the mouse. Methods Mol Biol. 2013;1037:299–311.

    Article  PubMed  Google Scholar 

  26. Wang B, Ma L, Wang J. LncRNA HOTTIP knockdown attenuates acute myocardial infarction via regulating miR-92a-2/c-Met axis. Cardiovasc Toxicol. 2022;22(4):352–64. https://doi.org/10.1007/s12012-021-09717-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hu S, Huang M, Li Z, Jia F, Ghosh Z, Lijkwan MA, Fasanaro P, Sun N, Wang X, Martelli F, Robbins RC, Wu JC. MicroRNA-210 as a novel therapy for treatment of ischemic heart disease. Circulation. 2010;122(11 Suppl):S124–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Song R, Dasgupta C, Mulder C, Zhang L. MicroRNA-210 controls mitochondrial metabolism and protects heart function in myocardial infarction. Circulation. 2022;145(15):1140–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fan ZG, Qu XL, Chu P, Gao YL, Gao XF, Chen SL, Tian NL. MicroRNA-210 promotes angiogenesis in acute myocardial infarction. Mol Med Rep. 2018;17(4):5658–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Liao Y, Li H, Pi Y, Li Z, Jin S. Cardioprotective effect of IGF-1 against myocardial ischemia/reperfusion injury through activation of PI3K/Akt pathway in rats in vivo. J Int Med Res. 2019;47(8):3886–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zheng J, Chen P, Zhong J, Cheng Y, Chen H, He Y, Chen C. HIF-1α in myocardial ischemia-reperfusion injury (Review). Mol Med Rep. 2021;23(5):352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Marcheselli VL, Hong S, Lukiw WJ, Tian XH, Gronert K, Musto A, Hardy M, Gimenez JM, Chiang N, Serhan CN, Bazan NG. Novel docosanoids inhibit brain ischemia-reperfusion-mediated leukocyte infiltration and pro-inflammatory gene expression. J Biol Chem. 2003;278(44):43807–17.

    Article  CAS  PubMed  Google Scholar 

  33. Zhao Y, Calon F, Julien C, Winkler JW, Petasis NA, Lukiw WJ, Bazan NG. Docosahexaenoic acid-derived neuroprotectin D1 induces neuronal survival via secretase- and PPARγ-mediated mechanisms in Alzheimer’s disease models. PloS One. 2011;6(1):e15816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Luo CL, Li QQ, Chen XP, Zhang XM, Li LL, Li BX, Zhao ZQ, Tao LY. Lipoxin A4 attenuates brain damage and downregulates the production of pro-inflammatory cytokines and phosphorylated mitogen-activated protein kinases in a mouse model of traumatic brain injury. Brain Res. 2013;1502:1–10.

    Article  CAS  PubMed  Google Scholar 

  35. Hawkins KE, DeMars KM, Singh J, Yang C, Cho HS, Frankowski JC, Doré S, Candelario-Jalil E. Neurovascular protection by post-ischemic intravenous injections of the lipoxin A4 receptor agonist, BML-111, in a rat model of ischemic stroke. J Neurochem. 2014;129(1):130–42.

    Article  CAS  PubMed  Google Scholar 

  36. Bazan NG. Neuroprotectin D1-mediated anti-inflammatory and survival signaling in stroke, retinal degenerations, and Alzheimer’s disease. J Lipid Res. 2009;50:S400–5.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Bazan NG. Neuroprotectin D1 (NPD1): a DHA-derived mediator that protects brain and retina against cell injury-induced oxidative stress. Brain Pathol. 2005;15(2):159–66.

    Article  CAS  PubMed  Google Scholar 

  38. Bazan NG. Cell survival matters: docosahexaenoic acid signaling, neuroprotection and photoreceptors. Trends Neurosci. 2006;29(5):263–71.

    Article  CAS  PubMed  Google Scholar 

  39. Levings DC, Wang X, Kohlhase D, Bell DA, Slattery M. A distinct class of antioxidant response elements is consistently activated in tumors with NRF2 mutations. Redox Biol. 2018;19:235–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kino T, Khan M, Mohsin S. The regulatory role of T cell responses in cardiac remodeling following myocardial infarction. Int J Mol Sci. 2020;21(14):5013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sun YP, Oh SF, Uddin J, Yang R, Gotlinger K, Campbell E, Colgan SP, Petasis NA, Serhan CN. Resolvin D1 and its aspirin-triggered 17R epimer. Stereochemical assignments, anti-inflammatory properties, and enzymatic inactivation. J Biol Chem. 2007;282(13):9323–34.

    Article  CAS  PubMed  Google Scholar 

  42. Zhou Y, Wang J, Li X, Li K, Chen L, Zhang Z, Peng M. Neuroprotectin D1 protects against postoperative delirium-like behavior in aged mice. Front Aging Neurosci. 2020;12:582674. https://doi.org/10.3389/fnagi.2020.582674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet. 2010;11(9):597–610.

    Article  CAS  PubMed  Google Scholar 

  44. Kamps JA, Krenning G. Micromanaging cardiac regeneration: targeted delivery of microRNAs for cardiac repair and regeneration. World J Cardiol. 2016;8(2):163–79.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Arif M, Pandey R, Alam P, Jiang S, Sadayappan S, Paul A, Ahmed RPH. MicroRNA-210-mediated proliferation, survival, and angiogenesis promote cardiac repair post myocardial infarction in rodents. J Mol Med. 2017;95(12):1369–85.

    Article  CAS  PubMed  Google Scholar 

  46. Zhang Z, Yao L, Yang J, Wang Z, Du G. PI3K/Akt and HIF-1 signaling pathway in hypoxia-ischemia. Mol Med Rep. 2018;18(4):3547–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Li X, Gui Z, Liu H, Qian S, Jia Y, Luo X. Remifentanil pretreatment ameliorates H/R-induced cardiac microvascular endothelial cell dysfunction by regulating the PI3K/Akt/HIF-1α signaling pathway. Bioengineered. 2021;12(1):7872–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Liu S, Ai Q, Feng K, Li Y, Liu X. The cardioprotective effect of dihydromyricetin prevents ischemia-reperfusion-induced apoptosis in vivo and in vitro via the PI3K/Akt and HIF-1α signaling pathways. Apoptosis. 2016;21(12):1366–85.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Science and Technology Innovation Foundation of Shenzhen (JCYJ20190806150005453)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shihai Xu or Ping Gong.

Ethics declarations

Ethics Approval and Consent to Participate

This study was approved by the Ethics Committee of Shenzhen People’s Hospital (The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology) (LL-KY-2019288).

Conflict of Interest

The authors declared no competing interests.

Additional information

Associate Editor Guoping Li oversaw the review of this article

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Wang, J., Wang, X. et al. Protectin D1 Alleviates Myocardial Ischemia/Reperfusion Injury by Regulating PI3K/AKT Signaling Pathway. J. of Cardiovasc. Trans. Res. 17, 376–387 (2024). https://doi.org/10.1007/s12265-023-10426-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-023-10426-1

Keywords

Navigation