Skip to main content

Effect of Beta Blockers on the Hemodynamics and Thrombotic Risk of Coronary Artery Aneurysms in Kawasaki Disease

Abstract

This study aims to simulate beta blockers’ (BB) effects on coronary artery aneurysms’ (CAA) hemodynamics and thrombotic risk in Kawasaki disease (KD). BB are recommended in cases of large aneurysms due to their anti-ischemic effect. Coronary blood flow (CBF) was simulated in KD patient-specific CAA models using computational fluid dynamics. Hemodynamic indices that correlate with thrombotic risk were calculated following two possible responses to BB: (1) preserved coronary flow (third BB generation) and (2) reduction in coronary flow (first and second BB generations) at reduced heart rate. Following CBF reduction scenario, mean TAWSS and HOLMES significantly decreased compared to normal conditions, leading to a potential increase in thrombotic risk. Preserved CBF at lower heart rates, mimicking the response to vasodilating BBs, does not significantly affect local CAA hemodynamics compared with baseline, while achieving the desired anti-ischemic effects. Different BB generations lead to different hemodynamic responses in CAA.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. AbouSherif S, OzdenTok O, Taşköylü Ö, Goktekin O, Kilic ID. Coronary artery aneurysms: a review of the epidemiology, pathophysiology, diagnosis, and treatment. Frontiers in cardiovascular medicine. 2017;4:24.

    Article  Google Scholar 

  2. Robertson T. Prognostic significance of coronary artery aneurysm and ectasia in the Coronary Artery Surgery Study (CASS) registry. Prog Clin Biol Res. 1987;250:325.

    CAS  PubMed  Google Scholar 

  3. Wang H, Anzai H, Liu Y, Qiao A, Xie J, Ohta M. Hemodynamic-based evaluation on thrombosis risk of fusiform coronary artery aneurysms using computational fluid dynamic simulation method. Complexity. 2020;2020.

  4. Ozaki K, Tanaka T. Molecular genetics of coronary artery disease. J Hum Genet. 2016;61(1):71–7.

    Article  CAS  PubMed  Google Scholar 

  5. Kawsara A, Núñez Gil IJ, Alqahtani F, Moreland J, Rihal CS, Alkhouli M. Management of coronary artery aneurysms. JACC: Cardiovascular interventions. 2018;11(13):1211–23.

    PubMed  Google Scholar 

  6. 20 BCCJRWMWLRSMSDPPM, A. 2 TDCDGDDBNSSHEWNMWBTJ. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447(7145):661–78.

  7. Senzaki H. The pathophysiology of coronary artery aneurysms in Kawasaki disease: role of matrix metalloproteinases. Arch Dis Child. 2006;91(10):847–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dajani AS, Taubert KA, Gerber MA, Shulman ST, Ferrieri P, Freed M, et al. Diagnosis and therapy of Kawasaki disease in children. Circulation. 1993;87(5):1776–80.

    Article  CAS  PubMed  Google Scholar 

  9. Asadbeygi A, Lee S, Kovalchin J, Hatoum H. Predicting hemodynamic indices in coronary artery aneurysms using response surface method: An application in Kawasaki disease. Computer Methods and Programs in Biomedicine. 2022:107007.

  10. Newburger JW, Takahashi M, Burns JC. Kawasaki disease. J Am Coll Cardiol. 2016;67(14):1738–49.

    Article  PubMed  Google Scholar 

  11. Boudonas G. β-Blockers in coronary artery disease management. Hippokratia. 2010;14(4):231.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Galderisi M, D’Errico A. β-Blockers and coronary flow reserve. Drugs. 2008;68(5):579–650.

    Article  CAS  PubMed  Google Scholar 

  13. Young M, Vatner S, Vatner S. Alpa-and beta-adrenergic control of large coronary arteries in conscious dogs. Circ Res. 1974;34:812–23.

    Google Scholar 

  14. Strauer B. The hypertensive heart VII Effect of atenolol on the function, coronary haemodynamics and oxygen uptake of the left ventricle (author’s transl). Deutsche Medizinische Wochenschrift (19746). 1978;103(45):1785–9.

    Article  CAS  Google Scholar 

  15. Marshall R, Parratt J. Comparative effects of propranolol and practolol in the early stages of experimental canine myocardial infarction. Br J Pharmacol. 1976;57(2):295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gullu H, Erdogan D, Caliskan M, Tok D, Yildirim I, Sezgin A, et al. Different effects of atenolol and nebivolol on coronary flow reserve. Heart. 2006;92(11):1690–1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bottcher M, Czernin J, Sun K, Phelps ME, Schelbert HR. Effect of (beta) 1 adrenergic receptor blockade on myocardial blood flow and vasodilatory capacity. The Journal of Nuclear Medicine. 1997;38(3):442.

    CAS  PubMed  Google Scholar 

  18. Billinger M, Seiler C, Fleisch M, Eberli FR, Meier B, Hess OM. Do beta-adrenergic blocking agents increase coronary flow reserve? J Am Coll Cardiol. 2001;38(7):1866–71.

    Article  CAS  PubMed  Google Scholar 

  19. Togni M, Vigorito F, Windecker S, Abrecht L, Wenaweser P, Cook S, et al. Does the β-blocker nebivolol increase coronary flow reserve? Cardiovasc Drugs Ther. 2007;21(2):99–108.

    Article  CAS  PubMed  Google Scholar 

  20. Neglia D, De Maria R, Masi S, Gallopin M, Pisani P, Pardini S, et al. Effects of long-term treatment with carvedilol on myocardial blood flow in idiopathic dilated cardiomyopathy. Heart. 2007;93(7):808–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Galderisi M, Cicala S, D’Errico A, de Divitiis O, de Simone G. Nebivolol improves coronary flow reserve in hypertensive patients without coronary heart disease. J Hypertens. 2004;22(11):2201–8.

    Article  CAS  PubMed  Google Scholar 

  22. Koepfli P, Wyss CA, Namdar M, Klainguti M, von Schulthess GK, Lüscher TF, et al. Β-adrenergic blockade and myocardial perfusion in coronary artery disease: differential effects in stenotic versus remote myocardial segments. J Nucl Med. 2004;45(10):1626–31.

    CAS  PubMed  Google Scholar 

  23. Gutierrez NG, Kahn A, Burns JC, Marsden AL. Computational blood flow simulations in Kawasaki disease patients: insight into coronary artery aneurysm hemodynamics. Global cardiology science & practice. 2017;2017(3).

  24. Sengupta D, Kahn AM, Burns JC, Sankaran S, Shadden SC, Marsden AL. Image-based modeling of hemodynamics in coronary artery aneurysms caused by Kawasaki disease. Biomech Model Mechanobiol. 2012;11(6):915–32.

    Article  PubMed  Google Scholar 

  25. Kung E, Kahn AM, Burns JC, Marsden A. In Vitro Validation of Patient-Specific Hemodynamic Simulations in Coronary Aneurysms Caused by Kawasaki Disease. Cardiovasc Eng Technol. 2014;5(2):189–201.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Shamloo A, Boroumand A, Ebrahimi S, Kalantarnia F, Maleki S, Moradi H. Modeling of an Ultrasound System in Targeted Drug Delivery to Abdominal Aortic Aneurysm: A Patient-Specific in Silico Study Based on Ligand-Receptor Binding. IEEE Trans Ultrason Ferroelectr Freq Control. 2021;69(3):967–74.

    Article  Google Scholar 

  27. Forouzandehmehr M, Ghoytasi I, Shamloo A, Ghosi S. Particles in coronary circulation: A review on modelling for drug carrier design. Materials & Design. 2022:110511.

  28. Shamloo A, Ebrahimi S, Ghorbani G, Alishiri M. Targeted drug delivery of magnetic microbubble for abdominal aortic aneurysm: an in silico study. Biomech Model Mechanobiol. 2022;21(2):735–53.

    Article  PubMed  Google Scholar 

  29. Abazari MA, Rafieianzab D, Soltani M, Alimohammadi M. The effect of beta-blockers on hemodynamic parameters in patient-specific blood flow simulations of type-B aortic dissection: A virtual study. Sci Rep. 2021;11(1):1–14.

    Article  Google Scholar 

  30. Rayz V, Boussel L, Ge L, Leach J, Martin A, Lawton M, et al. Flow residence time and regions of intraluminal thrombus deposition in intracranial aneurysms. Ann Biomed Eng. 2010;38(10):3058–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Arzani A, Suh G-Y, Dalman RL, Shadden SC. A longitudinal comparison of hemodynamics and intraluminal thrombus deposition in abdominal aortic aneurysms. American Journal of Physiology-Heart and Circulatory Physiology. 2014;307(12):H1786–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu B, Tang D. Influence of non-Newtonian properties of blood on the wall shear stress in human atherosclerotic right coronary arteries. Mol Cell Biomech. 2011;8(1):73–90.

    PubMed  PubMed Central  Google Scholar 

  33. Apostolidis AJ, Moyer AP, Beris AN. Non-Newtonian effects in simulations of coronary arterial blood flow. J Nonnewton Fluid Mech. 2016;233:155–65.

    Article  CAS  Google Scholar 

  34. Siogkas P, Sakellarios A, Exarchos T, Stefanou K, Fotiadis D, Naka K, et al. Blood flow in arterial segments: rigid vs. deformable walls simulations. Journal of the Serbian Society for Computational Mechanics. 2011;5(1):69–77.

    Google Scholar 

  35. Taylor CA, Fonte TA, Min JK. Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve: scientific basis. J Am Coll Cardiol. 2013;61(22):2233–41.

    Article  PubMed  Google Scholar 

  36. Vardhan M, Gounley J, Chen SJ, Chi EC, Kahn AM, Leopold JA, et al. Non-invasive characterization of complex coronary lesions. Sci Rep. 2021;11(1):1–15.

    Article  Google Scholar 

  37. Kim HJ, Vignon-Clementel I, Coogan J, Figueroa C, Jansen K, Taylor C. Patient-specific modeling of blood flow and pressure in human coronary arteries. Ann Biomed Eng. 2010;38(10):3195–209.

    Article  CAS  PubMed  Google Scholar 

  38. Sriramarao P, Languino LR, Altieri DC. Fibrinogen mediates leukocyte-endothelium bridging in vivo at low shear forces. 1996.

  39. Hwang J, Ing MH, Salazar A, Lassègue B, Griendling K, Navab M, et al. Pulsatile versus oscillatory shear stress regulates NADPH oxidase subunit expression: implication for native LDL oxidation. Circ Res. 2003;93(12):1225–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Alimohammadi M, Pichardo-Almarza C, Agu O, Díaz-Zuccarini V. Development of a patient-specific multi-scale model to understand atherosclerosis and calcification locations: comparison with in vivo data in an aortic dissection. Front Physiol. 2016;7:238.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Vahidkhah K, Azadani AN. Supra-annular Valve-in-Valve implantation reduces blood stasis on the transcatheter aortic valve leaflets. J Biomech. 2017;58:114–22.

    Article  PubMed  Google Scholar 

  42. Plitman Mayo R, Yaakobovich H, Finkelstein A, Shadden SC, Marom G. Numerical models for assessing the risk of leaflet thrombosis post-transcatheter aortic valve-in-valve implantation. Royal Society open science. 2020;7(12):201838.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kuramochi Y, Ohkubo T, Takechi N, Fukumi D, Uchikoba Y, Ogawa S. Hemodynamic factors of thrombus formation in coronary aneurysms associated with Kawasaki disease. Pediatr Int. 2000;42(5):470–5.

    Article  CAS  PubMed  Google Scholar 

  44. Hamaoka K, Onouchi Z, Kamiya Y, Sakata K. Evaluation of coronary flow velocity dynamics and flow reserve in patients with Kawasaki disease by means of a Doppler guide wire. J Am Coll Cardiol. 1998;31(4):833–40.

    Article  CAS  PubMed  Google Scholar 

  45. Gutierrez NG, Mathew M, McCrindle BW, Tran JS, Kahn AM, Burns JC, et al. Hemodynamic variables in aneurysms are associated with thrombotic risk in children with Kawasaki disease. Int J Cardiol. 2019;281:15–21.

    Article  PubMed Central  Google Scholar 

  46. Engblom H, Xue H, Akil S, Carlsson M, Hindorf C, Oddstig J, et al. Fully quantitative cardiovascular magnetic resonance myocardial perfusion ready for clinical use: a comparison between cardiovascular magnetic resonance imaging and positron emission tomography. J Cardiovasc Magn Reson. 2017;19(1):1–9.

    Article  Google Scholar 

Download references

Funding

This work was partially funded by Michigan Technological University’s Research Excellence Fund. Alireza Asadbeygi was partly funded by the Blue Cross Blue Shield of Michigan Foundation. No other external funding was received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoda Hatoum.

Ethics declarations

Conflict of Interest

Alireza Asadbeygi reports financial support was provided by Blue Cross Blue Shield of Michigan Foundation. Hoda Hatoum reports financial support was provided by Michigan Technological University. Hoda Hatoum reports a relationship with Dasi Simulations LLC that includes board membership. Hoda Hatoum has patent pending to Georgia Institute of Technology. Hoda Hatoum has patent pending to Georgia Institute of Technology and the Ohio State University.

Disclosures

Dr. Hatoum filed a patent application on computational predictive modeling of thrombosis in heart valves and on a novel implantable vascular shunt with real-time precise flow control. She is a member of the scientific advisory board at Dasi Simulations LLC.

Additional information

Associate Editor Jozine ter Maaten oversaw the review of this article

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asadbeygi, A., Lee, S., Kovalchin, J. et al. Effect of Beta Blockers on the Hemodynamics and Thrombotic Risk of Coronary Artery Aneurysms in Kawasaki Disease. J. of Cardiovasc. Trans. Res. (2023). https://doi.org/10.1007/s12265-023-10370-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12265-023-10370-0

Keywords

  • Coronary artery aneurysm (CAA)
  • Thrombosis
  • Beta blockers (BB)
  • Kawasaki disease (KD)
  • Computational fluid dynamics (CFD)
  • Particle residence time