Skip to main content

Computerized Differentiation of Growth Status for Abdominal Aortic Aneurysms: A Feasibility Study

Abstract 

Fast-growing abdominal aortic aneurysms (AAA) have a high rupture risk and poor outcomes if not promptly identified and treated. Our primary objective is to improve the differentiation of small AAAs’ growth status (fast versus slow-growing) through a combination of patient health information, computational hemodynamics, geometric analysis, and artificial intelligence. 3D computed tomography angiography (CTA) data available for 70 patients diagnosed with AAAs with known growth status were used to conduct geometric and hemodynamic analyses. Differences among ten metrics (out of ninety metrics) were statistically significant discriminators between fast and slow-growing groups. Using a support vector machine (SVM) classifier, the area under receiving operating curve (AUROC) and total accuracy of our best predictive model for differentiation of AAAs’ growth status were 0.86 and 77.50%, respectively. In summary, the proposed analytics has the potential to differentiate fast from slow-growing AAAs, helping guide resource allocation for the management of patients with AAAs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Data Availability

Imaging data were acquired at Mayo Clinic (Rochester, MN, USA). Derived data supporting this study will be made availble from the corresponding author (JJ) upon request.

Abbreviations

AAA:

Abdominal aortic aneurysm

AUROC:

Area under the receiver operatingor characteristic curves

CFD:

Computational fluid dynamics

DVO:

Degree of volume overlap

ILT:

Intraluminal thrombosis

MI:

Myocardial infarction

MIS:

Minimal inscribed sphere

NRVx :

Normalized remaining volume at x% of (MIS) sphere cutoff

NTT1:

Normalized thrombosis thickness 1

NTT2:

Normalized thrombosis thickness 2

NTTD:

Normalized thrombosis thickness differences

NTNU1:

Normalized thrombosis nonuniformity 1

NTNU2:

Normalized thrombosis nonuniformity 2

OSI:

Oscillatory shear index

OSI-Std:

Oscillatory shear index standard deviation

PHI:

Patient health information

SA-OSI:

Spatially averaged oscillatory shear index

STA-WSS:

Spatially and temporally averaged wall shear stress

TA-DVO:

Temporally averaged degree of volume overlap

TA-NOV:

Temporally averaged number of vortices

TA-WSSMax:

Temporally averaged wall shear stress maximum

TA-WSSMin:

Temporally averaged wall shear stress minimum

TIA:

Transient ischemic attack

UI:

Undulation index

VDC:

Voronoi diagram core

VtV:

Vortex volume to AAA volume

WSS:

Wall shear stress

WSS-Std:

Wall shear stress standard deviation

References

  1. Gloviczki P, Lawrence PF, Forbes TL. Update of the Society for Vascular Surgery abdominal aortic aneurysm guidelines. J Vasc Surg. 2018;67(1):1. https://doi.org/10.1016/j.jvs.2017.11.022.

    Article  Google Scholar 

  2. Olson SL, Wijesinha MA, Panthofer AM, Blackwelder WC, Upchurch GR Jr, Terrin ML, et al. Evaluating growth patterns of abdominal aortic aneurysm diameter with serial computed tomography surveillance. JAMA Surg. 2021;156(4):363–70. https://doi.org/10.1001/jamasurg.2020.7190.

    Article  Google Scholar 

  3. Silverstein MD, Pitts SR, Chaikof EL, Ballard DJ. Abdominal aortic aneurysm (AAA): cost-effectiveness of screening, surveillance of intermediate-sized AAA, and management of symptomatic AAA. Proc (Baylor Univ Med Cent). 2005;18(4):345–67. https://doi.org/10.1080/08998280.2005.11928095.

    Article  Google Scholar 

  4. Wilmink ABM, Quick CRG, Hubbard CS, Day NE. Effectiveness and cost of screening for abdominal aortic aneurysm: results of a population screening program. J Vasc Surg. 2003;38(1):72–7. https://doi.org/10.1016/S0741-5214(03)00135-6.

    Article  CAS  Google Scholar 

  5. Collaborators* TR. Surveillance intervals for small abdominal aortic aneurysms: a meta-analysis. JAMA. 2013;309(8):806–13. https://doi.org/10.1001/jama.2013.950.

    Article  Google Scholar 

  6. Lee R, Jones A, Cassimjee I, Handa A. International opinion on priorities in research for small abdominal aortic aneurysms and the potential path for research to impact clinical management. Int J Cardiol. 2017;245:253–5. https://doi.org/10.1016/j.ijcard.2017.06.058.

    Article  Google Scholar 

  7. Cameron SJ, Russell HM, Owens AP III. Antithrombotic therapy in abdominal aortic aneurysm: beneficial or detrimental? Blood. 2018;132(25):2619–28. https://doi.org/10.1182/blood-2017-08-743237.

    Article  CAS  Google Scholar 

  8. Zhu C, Leach JR, Wang Y, Gasper W, Saloner D, Hope MD. Intraluminal thrombus predicts rapid growth of abdominal aortic aneurysms. Radiology. 2020;294(3):707–13. https://doi.org/10.1148/radiol.2020191723.

    Article  Google Scholar 

  9. Morrell CN, Mix D, Aggarwal A, Bhandari R, Godwin M, Owens P, III, et al. Platelet olfactory receptor activation limits platelet reactivity and growth of aortic aneurysms. The Journal of Clinical Investigation. 2022;132(9). https://doi.org/10.1172/JCI152373.

  10. Lindquist Liljeqvist M, Bogdanovic M, Siika A, Gasser TC, Hultgren R, Roy J. Geometric and biomechanical modeling aided by machine learning improves the prediction of growth and rupture of small abdominal aortic aneurysms. Sci Rep. 2021;11(1):18040. https://doi.org/10.1038/s41598-021-96512-3.

    Article  CAS  Google Scholar 

  11. Meyrignac O, Bal L, Zadro C, Vavasseur A, Sewonu A, Gaudry M, et al. Combining volumetric and wall shear stress analysis from CT to assess risk of abdominal aortic aneurysm progression. Radiology. 2020;295(3):722–9. https://doi.org/10.1148/radiol.2020192112.

    Article  Google Scholar 

  12. Bazilevs Y, Calo V, Zhang Y, Hughes T. Isogeometric fluid–structure interaction analysis with applications to arterial blood flow. Comput Mech. 2006;38:310–22. https://doi.org/10.1007/s00466-006-0084-3.

    Article  Google Scholar 

  13. Jiang J, Strother CM. Interactive decomposition and mapping of saccular cerebral aneurysms using harmonic functions: its first application with “patient-specific” computational fluid dynamics (CFD) simulations. IEEE Trans Med Imaging. 2013;32(2):153–64. https://doi.org/10.1109/TMI.2012.2216542.

    Article  Google Scholar 

  14. Sunderland K, Huang Q, Strother C, Jiang J. Two closely spaced aneurysms of the supraclinoid internal carotid artery: how does one influence the other? Journal of Biomechanical Engineering. 2019;141(11). https://doi.org/10.1115/1.4043868.

  15. Sunderland K, Wang M, Pandey AS, Gemmete J, Huang Q, Goudge A, et al. Quantitative analysis of flow vortices: differentiation of unruptured and ruptured medium-sized middle cerebral artery aneurysms. Acta Neurochir. 2021;163(8):2339–49. https://doi.org/10.1007/s00701-020-04616-y.

    Article  CAS  Google Scholar 

  16. Poelma C, Watton PN, Ventikos Y. Transitional flow in aneurysms and the computation of haemodynamic parameters. J R Soc Interface. 2015;12(105):20141394. https://doi.org/10.1098/rsif.2014.1394.

    Article  Google Scholar 

  17. Jiang J, Strother CM. Interactive decomposition and mapping of saccular cerebral aneurysms using harmonic functions: its first application with “patient-specific” computational fluid dynamics (CFD) simulations. IEEE Trans Med Imaging. 2012;32(2):153–64.

    Article  Google Scholar 

  18. Piccinelli M, Veneziani A, Steinman DA, Remuzzi A, Antiga L. A framework for geometric analysis of vascular structures: application to cerebral aneurysms. IEEE Trans Med Imaging. 2009;28(8):1141–55. https://doi.org/10.1109/TMI.2009.2021652.

    Article  Google Scholar 

  19. Dhar S, Tremmel M, Mocco J, Kim M, Yamamoto J, Siddiqui AH, et al. Morphology parameters for intracranial aneurysm rupture risk assessment. Neurosurgery. 2008;63(2):185–97. https://doi.org/10.1227/01.Neu.0000316847.64140.81.

    Article  Google Scholar 

  20. Berkowitz BM. Development of metrics to describe cerebral aneurysm morphology. Ann Arbor: The University of Iowa; 2016. p. 147.

    Google Scholar 

  21. Piccinelli M, Steinman DA, Hoi Y, Tong F, Veneziani A, Antiga L. Automatic neck plane detection and 3D geometric characterization of aneurysmal sacs. Ann Biomed Eng. 2012;40(10):2188–211. https://doi.org/10.1007/s10439-012-0577-5.

    Article  Google Scholar 

  22. He X, Ku DN. Pulsatile flow in the human left coronary artery bifurcation: average conditions. J Biomech Eng. 1996;118(1):74–82. https://doi.org/10.1115/1.2795948.

    Article  CAS  Google Scholar 

  23. Smola AJ, Schölkopf B. A tutorial on support vector regression. Stat Comput. 2004;14(3):199–222. https://doi.org/10.1023/B:STCO.0000035301.49549.88.

    Article  Google Scholar 

  24. Speelman L, Hellenthal FA, Pulinx B, Bosboom EMH, Breeuwer M, van Sambeek MR, et al. The influence of wall stress on AAA growth and biomarkers. Eur J Vasc Endovasc Surg. 2010;39(4):410–6. https://doi.org/10.1016/j.ejvs.2009.12.021.

    Article  CAS  Google Scholar 

  25. Deeg MA, Meijer CA, Chan LS, Shen L, Lindeman JHN. Prognostic and predictive biomarkers of abdominal aortic aneurysm growth rate. Curr Med Res Opin. 2016;32(3):509–17. https://doi.org/10.1185/03007995.2015.1128406.

    Article  CAS  Google Scholar 

  26. Akkoyun E, Kwon ST, Acar AC, Lee W, Baek S. Predicting abdominal aortic aneurysm growth using patient-oriented growth models with two-step Bayesian inference. Comput Biol Med. 2020;117:103620. https://doi.org/10.1016/j.compbiomed.2020.103620.

    Article  Google Scholar 

  27. Chandrashekar A, Handa A, Lapolla P, Shivakumar N, Ngetich E, Grau V, et al. Prediction of abdominal aortic aneurysm growth using geometric assessment of computerised tomography images acquired during the aneurysm surveillance period. Ann Surg. 2020. https://doi.org/10.1097/sla.0000000000004711.

    Article  Google Scholar 

  28. Hirata K, Nakaura T, Nakagawa M, Kidoh M, Oda S, Utsunomiya D, et al. Machine learning to predict the rapid growth of small abdominal aortic aneurysm. J Comput Assist Tomogr. 2020;44(1):37–42. https://doi.org/10.1097/rct.0000000000000958.

    Article  Google Scholar 

  29. Jiang Z, Choi J, Baek S. Machine learning approaches to surrogate multifidelity growth and remodeling models for efficient abdominal aortic aneurysmal applications. Comput Biol Med. 2021;133:104394. https://doi.org/10.1016/j.compbiomed.2021.104394.

    Article  Google Scholar 

  30. Salman HE, Ramazanli B, Yavuz MM, Yalcin HC. Biomechanical investigation of disturbed hemodynamics-induced tissue degeneration in abdominal aortic aneurysms using computational and experimental techniques. Front Bioengine Biotechnol. 2019;7:111. https://doi.org/10.3389/fbioe.2019.00111.

    Article  Google Scholar 

  31. Di Achille P, Tellides G, Figueroa CA, Humphrey JD. A haemodynamic predictor of intraluminal thrombus formation in abdominal aortic aneurysms. Proc Royal Soc A: Mathematical Phys Eng Sci. 2014;470(2172):20140163. https://doi.org/10.1098/rspa.2014.0163.

    Article  Google Scholar 

  32. Chen H, Bi Y, Ju S, Gu L, Zhu X, Han X. Hemodynamics and pathology of an enlarging abdominal aortic aneurysm model in rabbits. PLoS ONE. 2018;13(10):e0205366. https://doi.org/10.1371/journal.pone.0205366.

    Article  CAS  Google Scholar 

  33. Sunderland K, Jiang J, Zhao F. Disturbed flow’s impact on cellular changes indicative of vascular aneurysm initiation, expansion, and rupture: a pathological and methodological review. Journal of Cellular Physiology. 2021;n/a(n/a):1–12. https://doi.org/10.1002/jcp.30569.

  34. Mu N, Lyu Z, Rezaeitaleshmahalleh M, Tang J, Jiang J. An attention residual U-Net with differential preprocessing and geometric postprocessing: learning how to segment vasculature including intracranial aneurysms. Medical Image Analysis. 2022:102697. https://doi.org/10.1016/j.media.2022.102697.

  35. Brady AR, Thompson SG, Fowkes FGR, Greenhalgh RM, Powell JT. Abdominal aortic aneurysm expansion. Circulation. 2004;110(1):16–21. https://doi.org/10.1161/01.CIR.0000133279.07468.9F.

    Article  Google Scholar 

  36. Morris L, Stefanov F, McGloughlin T. Stent graft performance in the treatment of abdominal aortic aneurysms: the influence of compliance and geometry. J Biomech. 2013;46(2):383–95. https://doi.org/10.1016/j.jbiomech.2012.11.026.

    Article  Google Scholar 

  37. Soudah E, Ng EYK, Loong TH, Bordone M, Pua U, Narayanan S. CFD modelling of abdominal aortic aneurysm on hemodynamic loads using a realistic geometry with CT. Comput Math Methods Med. 2013;2013:472564. https://doi.org/10.1155/2013/472564.

    Article  Google Scholar 

Download references

Funding

Mr. Mostafa Rezaeitaleshmahalleh is partially supported by a fellowship from the Health Research Institute at Michigan Technological University. This study also benefits from technologies developed by an NIH grant (R01-EB029570A1). 

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingfeng Jiang.

Ethics declarations

Ethics Approval and Consent to Participate

This study was approved by Institutional Review Boards at Michigan Technological University and Mayo Clinic. Because this is a secondary analysis of existing imaging data, patient consent was not required.

Conflict of Interest

The authors declare no competing interests.

Additional information

Associate Editor Judith C. Sluimer oversaw the review of this article

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2363 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaeitaleshmahalleh, M., Sunderland, K.W., Lyu, Z. et al. Computerized Differentiation of Growth Status for Abdominal Aortic Aneurysms: A Feasibility Study. J. of Cardiovasc. Trans. Res. (2023). https://doi.org/10.1007/s12265-022-10352-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12265-022-10352-8

Keywords

  • Machine learning
  • Predictive modeling
  • Abdominal aortic aneurysm
  • Aneurysm Growth
  • Computational hemodynamics