Abstract
This study characterizes the plasma levels and composition of SDS-resistant aggregates (SRAs) in patients with heart failure with preserved ejection fraction (HFpEF) to infer molecular pathways associated with disease and/or proteostasis disruption. Twenty adults (ten with HFpEF and ten age-matched individuals) were included. Circulating SRAs were resolved by diagonal two-dimensional SDS-PAGE, and their protein content was identified by mass spectrometry. Protein carbonylation, ubiquitination and ficolin-3 were evaluated. Patients with HFpEF showed higher SRA/total (36.6 ± 4.9% vs 29.6 ± 2.2%, p = 0.009) and SRA/soluble levels (58.6 ± 12.7% vs 40.6 ± 5.8%, p = 0.008). SRAs were carbonylated and ubiquitinated, suggesting they are composed of dysfunctional proteins resistant to degradation. SRAs were enriched in proteins associated with cardiovascular function/disease and with proteostasis machinery. Total ficolin-3 levels were decreased (0.77 ± 0.22, p = 0.041) in HFpEF, suggesting a reduced proteostasis capacity to clear circulating SRA. Thus, the higher accumulation of SRA in HFpEF may result from a failure or overload of the protein clearance machinery.
Graphical abstract
Similar content being viewed by others
References
McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Francesco Piepoli M, Price S, Rosano GMC, Ruschitzka F, Kathrine Skibelund A. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) With the special contributio. Eur Heart J. 2021;42:3599–726. https://doi.org/10.1093/eurheartj/ehab368.
van Heerebeek L, Paulus WJ. Understanding heart failure with preserved ejection fraction: where are we today? Netherlands Hear J. 2016;24:227–36. https://doi.org/10.1007/s12471-016-0810-1.
Nanayakkara S, Kaye DM. Management of heart failure with preserved ejection fraction: a review. Clin Ther. 2015;37:2186–98. https://doi.org/10.1016/j.clinthera.2015.08.005.
Santos M, Opotowsky AR, Shah AM, Tracy J, Waxman AB, Systrom DM. Central cardiac limit to aerobic capacity in patients with exertional pulmonary venous hypertension: implications for heart failure with preserved ejection fraction. Circ Hear Fail. 2015;8:278–85. https://doi.org/10.1161/CIRCHEARTFAILURE.114.001551.
Mishra S, Kass DA. Cellular and molecular pathobiology of heart failure with preserved ejection fraction. Nat Rev Cardiol. 2021;18:400–23. https://doi.org/10.1038/s41569-020-00480-6.
Ayyadevara S, Mercanti F, Wang X, Mackintosh SG, Tackett AJ, Prayaga SVS, Romeo F, Shmookler Reis RJ, Mehta JL. Age- and hypertension-associated protein aggregates in mouse heart have similar proteomic profiles. Hypertension. 2016;67:1006–13. https://doi.org/10.1161/HYPERTENSIONAHA.115.06849.
Evangelisti A, Butler H, Del Monte F. The heart of the Alzheimer’s: a mindful view of heart disease. Front Physiol. 2020;11:625974. https://doi.org/10.3389/fphys.2020.625974.
González-López E, Gallego-Delgado M, Guzzo-Merello G, de Haro-del Moral FJ, Cobo-Marcos M, Robles C, Bornstein B, Salas C, Lara-Pezzi E, Alonso-Pulpon L, Garcia-Pavia P. Wild-type transthyretin amyloidosis as a cause of heart failure with preserved ejection fraction. Eur Heart J. 2015;36:2585–94. https://doi.org/10.1093/eurheartj/ehv338.
Hahn VS, Yanek LR, Vaishnav J, Ying W, Vaidya D, Lee YZJ, Riley SJ, Subramanya V, Brown EE, Hopkins CD, Ononogbu S, Perzel Mandell K, Halushka MK, Steenbergen C, Rosenberg AZ, Tedford RJ, Judge DP, Shah SJ, Russell SD, Kass DA, Sharma K. Endomyocardial biopsy characterization of heart failure with preserved ejection fraction and prevalence of cardiac amyloidosis. JACC Hear Fail. 2020;8:712–24. https://doi.org/10.1016/j.jchf.2020.04.007.
Henning RH, Brundel BJJM. Proteostasis in cardiac health and disease. Nat Rev Cardiol. 2017;14:637–653. https://doi.org/10.1038/nrcardio.2017.89.
Hipp MS, Kasturi P, Hartl FU. The proteostasis network and its decline in ageing. Nat Rev Mol Cell Biol. 2019;20:421–35. https://doi.org/10.1038/s41580-019-0101-y.
Hofmann C, Katus HA, Doroudgar S. Protein misfolding in cardiac disease. Circulation. 2019;139:2085–8. https://doi.org/10.1161/CIRCULATIONAHA.118.037417.
Wiersma M, Henning RH, Brundel BJJM. Derailed proteostasis as a determinant of cardiac aging. Can J Cardiol. 2016;32:1166.e11-1166.e20. https://doi.org/10.1016/j.cjca.2016.03.005.
Willis MS, Patterson C. Proteotoxicity and cardiac dysfunction — Alzheimer’s disease of the heart? N Engl J Med. 2013;368:455–64. https://doi.org/10.1056/NEJMra1106180.
Klaips CL, Jayaraj GG, Hartl FU. Pathways of cellular proteostasis in aging and disease. J Cell Biol. 2017;217:51–63. https://doi.org/10.1083/jcb.201709072.
Morimoto RI. Cell-nonautonomous regulation of proteostasis in aging and disease. Cold Spring Harb Perspect Biol. 2020;12:a034074. https://doi.org/10.1101/cshperspect.a034074.
Sala AJ, Bott LC, Morimoto RI. Shaping proteostasis at the cellular, tissue, and organismal level. J Cell Biol. 2017;216:1231–41. https://doi.org/10.1083/jcb.201612111.
Labbadia J, Morimoto RI. The biology of proteostasis in aging and disease. Annu Rev Biochem. 2015;84:435–64. https://doi.org/10.1146/annurev-biochem-060614-033955.
Islam M, Diwan A, Mani K. Come together: protein assemblies, aggregates and the sarcostat at the heart of cardiac myocyte homeostasis. Front Physiol. 2020;11:586. https://doi.org/10.3389/fphys.2020.00586.
Felker GM, Mann DL (2019) Heart failure: a companion to Braunwald’s heart disease e-book. Elsevier Health Sciences
Nakai A, Yamaguchi O, Takeda T, Higuchi Y, Hikoso S, Taniike M, Omiya S, Mizote I, Matsumura Y, Asahi M, Nishida K, Hori M, Mizushima N, Otsu K. The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat Med. 2007;13:619–24. https://doi.org/10.1038/nm1574.
Zhu H, Tannous P, Johnstone JL, Kong Y, Shelton JM, Richardson JA, Le V, Levine B, Rothermel BA, Hill JA. Cardiac autophagy is a maladaptive response to hemodynamic stress. J Clin Invest. 2007;117:1782–93. https://doi.org/10.1172/JCI27523.
Day SM, Divald A, Wang P, Davis F, Bartolone S, Jones R, Powell SR. Impaired assembly and post-translational regulation of 26S proteasome in human end-stage heart failure. Circ Hear Fail. 2013;6:544–9. https://doi.org/10.1161/CIRCHEARTFAILURE.112.000119.
Predmore JM, Wang P, Davis F, Bartolone S, Westfall MV, Dyke DB, Pagani F, Powell SR, Day SM. Ubiquitin proteasome dysfunction in human hypertrophic and dilated cardiomyopathies. Circulation. 2010;121:997–1004. https://doi.org/10.1161/CIRCULATIONAHA.109.904557.
Schiattarella GG, Altamirano F, Tong D, French KM, Villalobos E, Kim SY, Luo X, Jiang N, May HI, Wang ZV, Hill TM, Mammen PPA, Huang J, Lee DI, Hahn VS, Sharma K, Kass DA, Lavandero S, Gillette TG, Hill JA. Nitrosative stress drives heart failure with preserved ejection fraction. Nature. 2019;568:351–6. https://doi.org/10.1038/s41586-019-1100-z.
Uversky VN. Mysterious oligomerization of the amyloidogenic proteins. FEBS J. 2010;277:2940–53. https://doi.org/10.1111/j.1742-4658.2010.07721.x.
Gorza L, del Monte F. Protein unfolding in cardiomyopathies. Heart Fail Clin. 2005;1:237–50. https://doi.org/10.1016/j.hfc.2005.03.009.
Gouveia M, Xia K, Colón W, Vieira SI, Ribeiro F. Protein aggregation, cardiovascular diseases, and exercise training: where do we stand? Ageing Res Rev. 2017;40:1–10. https://doi.org/10.1016/j.arr.2017.07.005.
Pattison JS, Sanbe A, Maloyan A, Osinska H, Klevitsky R, Robbins J. Cardiomyocyte expression of a polyglutamine preamyloid oligomer causes heart failure. Circulation. 2008;117:2743–51. https://doi.org/10.1161/CIRCULATIONAHA.107.750232.
Rubin J, Maurer MS. Cardiac amyloidosis: overlooked, underappreciated, and treatable. Annu Rev Med. 2020;71:203–19. https://doi.org/10.1146/annurev-med-052918-020140.
Sanbe A, Osinska H, Saffitz JE, Glabe CG, Kayed R, Maloyan A, Robbins J. Desmin-related cardiomyopathy in transgenic mice: a cardiac amyloidosis. Proc Natl Acad Sci U S A. 2004;101:10132–6. https://doi.org/10.1073/pnas.0401900101.
Diteepeng T, del Monte F, Luciani M. The long and winding road to target protein misfolding in cardiovascular diseases. Eur J Clin Invest. 2021;51: e13504. https://doi.org/10.1111/eci.13504.
Millen KR, Buhimschi CS, Zhao G, Rood KM, Tabbah S, Buhimschi IA. Serum and urine thioflavin-T–enhanced fluorescence in severe preeclampsia. Hypertension. 2018;71:1185–92. https://doi.org/10.1161/HYPERTENSIONAHA.118.11034.
Xia K, Trasatti H, Wymer JP, Colón W. Increased levels of hyper-stable protein aggregates in plasma of older adults. Age. 2016;38:1–9. https://doi.org/10.1007/s11357-016-9919-9.
Adiutori R, Puentes F, Bremang M, Lombardi V, Zubiri I, Leoni E, Aarum J, Sheer D, McArthur S, Pike I, Malaspina A (2021) Analysis of circulating protein aggregates as a route of investigation into neurodegenerative disorders. Brain Commun 3:fcab148. https://doi.org/10.1093/braincomms/fcab148
Manning M, Colón W. Structural basis of protein kinetic stability: resistance to sodium dodecyl sulfate suggests a central role for rigidity and a bias toward β-sheet structure. Biochemistry. 2004;43:11248–54. https://doi.org/10.1021/bi0491898.
Wyatt AR, Yerbury JJ, Poon S, Wilson MR. Therapeutic targets in extracellular protein deposition diseases. Curr Med Chem. 2009;16:2855–66. https://doi.org/10.2174/092986709788803187.
Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, Falk V, González-Juanatey JR, Harjola V-P, Jankowska EA, Jessup M, Linde C, Nihoyannopoulos P, Parissis JT, Pieske B, Riley JP, Rosano GMC, Ruilope LM, Ruschitzka F, Rutten FH, van der Meer P, Group ESCSD. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) developed with the special contribution of. Eur Heart J. 2016;37:2129–200. https://doi.org/10.1093/eurheartj/ehw128.
Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, Clement DL, Coca A, de Simone G, Dominiczak A, Kahan T, Mahfoud F, Redon J, Ruilope L, Zanchetti A, Kerins M, Kjeldsen SE, Kreutz R, Laurent S, Lip GYH, McManus R, Narkiewicz K, Ruschitzka F, Schmieder RE, Shlyakhto E, Tsioufis C, Aboyans V, Desormais I. 2018 ESC/ESH guidelines for the management of arterial hypertension: the Task Force for the management of arterial hypertension of the European Society of Cardiology (ESC) and the European Society of Hypertension (ESH). Eur Heart J. 2018;39:3021–104. https://doi.org/10.1093/eurheartj/ehy339.
Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T, Lancellotti P, Muraru D, Picard MH, Rietzschel ER, Rudski L, Spencer KT, Tsang W, Voigt J-U. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28:1-39.e14. https://doi.org/10.1016/j.echo.2014.10.003.
Committee ATS, on Proficiency Standards for Clinical Pulmonary Function Laboratories,. ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med. 2002;166:111–7. https://doi.org/10.1164/ajrccm.166.1.at1102.
Deutsch EW, Bandeira N, Sharma V, Perez-Riverol Y, Carver JJ, Kundu DJ, García-Seisdedos D, Jarnuczak AF, Hewapathirana S, Pullman BS, Wertz J, Sun Z, Kawano S, Okuda S, Watanabe Y, Hermjakob H, MacLean B, MacCoss MJ, Zhu Y, Ishihama Y, Vizcaíno JA. The ProteomeXchange consortium in 2020: enabling ‘big data’ approaches in proteomics. Nucleic Acids Res. 2020;48:D1145–52. https://doi.org/10.1093/nar/gkz984.
Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, Jensen LJ, von Mering C. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47:D607–13. https://doi.org/10.1093/nar/gky1131.
Chiti F, Stefani M, Taddei N, Ramponi G, Dobson CM. Rationalization of the effects of mutations on peptide and protein aggregation rates. Nature. 2003;424:805–8. https://doi.org/10.1038/nature01891.
Knowles TPJ, Vendruscolo M, Dobson CM. The amyloid state and its association with protein misfolding diseases. Nat Rev Mol Cell Biol. 2014;15:384–396. https://doi.org/10.1038/nrm3810.
Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982;157:105–32. https://doi.org/10.1016/0022-2836(82)90515-0.
Basisty N, Schilling B, Rabinovitch PS. Identifying ubiquitinated proteins and aggregates. Aging (Albany NY). 2018;10:2549–50. https://doi.org/10.18632/aging.101605.
Kostin S, Pool L, Elsässer A, Hein S, Drexler HCA, Arnon E, Hayakawa Y, Zimmermann R, Bauer E, Klövekorn W-P, Schaper J. Myocytes die by multiple mechanisms in failing human hearts. Circ Res. 2003;92:715–24. https://doi.org/10.1161/01.RES.0000067471.95890.5C.
Tanase M, Urbanska AM, Zolla V, Clement CC, Huang L, Morozova K, Follo C, Goldberg M, Roda B, Reschiglian P, Santambrogio L. Role of carbonyl modifications on aging-associated protein aggregation. Sci Rep. 2016;6:19311. https://doi.org/10.1038/srep19311.
Cater JH, Kumita JR, Abdallah RZ, Zhao G, Bernardo-Gancedo A, Henry A, Winata W, Chi M, Grenyer BSF, Townsend ML, Ranson M, Buhimschi CS, Charnock-Jones DS, Dobson CM, Wilson MR, Buhimschi IA, Wyatt AR. Human pregnancy zone protein stabilizes misfolded proteins including preeclampsia- and Alzheimer’s-associated amyloid beta peptide. Proc Natl Acad Sci. 2019;116:6101–10. https://doi.org/10.1073/pnas.1817298116.
Finn TE, Nunez AC, Sunde M, Easterbrook-Smith SB. Serum albumin prevents protein aggregation and amyloid formation and retains chaperone-like activity in the presence of physiological ligands. J Biol Chem. 2012;287:21530–40. https://doi.org/10.1074/jbc.M112.372961.
Tang H, Fu Y, Cui Y, He Y, Zeng X, Ploplis VA, Castellino FJ, Luo Y. Fibrinogen has chaperone-like activity. Biochem Biophys Res Commun. 2009;378:662–7. https://doi.org/10.1016/j.bbrc.2008.11.112.
Wyatt AR, Wilson MR. Acute phase proteins are major clients for the chaperone action of α2-macroglobulin in human plasma. Cell Stress Chaperones. 2013;18:161–70. https://doi.org/10.1007/s12192-012-0365-z.
Wyatt AR, Yerbury JJ, Ecroyd H, Wilson MR. Extracellular chaperones and proteostasis. Annu Rev Biochem. 2013;82:295–322. https://doi.org/10.1146/annurev-biochem-072711-163904.
Buhimschi IA, Nayeri UA, Zhao G, Shook LL, Pensalfini A, Funai EF, Bernstein IM, Glabe CG, Buhimschi CS (2014) Protein misfolding, congophilia, oligomerization, and defective amyloid processing in preeclampsia. Sci Transl Med 6:245ra92. https://doi.org/10.1126/scitranslmed.3008808
Gillmore JD, Lachmann HJ, Rowczenio D, Gilbertson JA, Zeng C-H, Liu Z-H, Li L-S, Wechalekar A, Hawkins PN. Diagnosis, pathogenesis, treatment, and prognosis of hereditary fibrinogen Aα-chain amyloidosis. J Am Soc Nephrol. 2009;20:444–51. https://doi.org/10.1681/ASN.2008060614.
Kim JW, Byun MS, Lee JH, Yi D, Jeon SY, Sohn BK, Lee J-Y, Shin SA, Kim YK, Kang KM, Sohn C-H, Lee DY, Group for the KR. Serum albumin and beta-amyloid deposition in the human brain. Neurology. 2020;95:e815–26. https://doi.org/10.1212/WNL.0000000000010005.
Sergeeva VA, Zakharova NV, Bugrova AE, Starodubtseva NL, Indeykina MI, Kononikhin AS, Frankevich VE, Nikolaev EN. The high-resolution mass spectrometry study of the protein composition of amyloid-like urine aggregates associated with preeclampsia. Eur J Mass Spectrom. 2019;26:158–61. https://doi.org/10.1177/1469066719860076.
Varma VR, Varma S, An Y, Hohman TJ, Seddighi S, Casanova R, Beri A, Dammer EB, Seyfried NT, Pletnikova O, Moghekar A, Wilson MR, Lah JJ, O’Brien RJ, Levey AI, Troncoso JC, Albert MS, Thambisetty M. Alpha-2 macroglobulin in Alzheimer’s disease: a marker of neuronal injury through the RCAN1 pathway. Mol Psychiatry. 2017;22:13–23. https://doi.org/10.1038/mp.2016.206.
Holme I, Aastveit AH, Hammar N, Jungner I, Walldius G. Haptoglobin and risk of myocardial infarction, stroke, and congestive heart failure in 342,125 men and women in the Apolipoprotein MOrtality RISk study (AMORIS). Ann Med. 2009;41:522–32. https://doi.org/10.1080/07853890903089453.
Lu D-Y, Lin C-P, Wu C-H, Cheng T-M, Pan J-P. Plasma haptoglobin level can augment NT-proBNP to predict poor outcome in patients with severe acute decompensated heart failure. J Investig Med. 2019;67:20–7. https://doi.org/10.1136/jim-2018-000710.
Prohászka Z, Munthe-Fog L, Ueland T, Gombos T, Yndestad A, Förhécz Z, Skjoedt M-O, Pozsonyi Z, Gustavsen A, Jánoskuti L, Karádi I, Gullestad L, Dahl CP, Askevold ET, Füst G, Aukrust P, Mollnes TE, Garred P. Association of ficolin-3 with severity and outcome of chronic heart failure. PLoS ONE. 2013;8:e60976. https://doi.org/10.1371/journal.pone.0060976.
Dogan A. Amyloidosis: insights from proteomics. Annu Rev Pathol Mech Dis. 2017;12:277–304. https://doi.org/10.1146/annurev-pathol-052016-100200.
Kaushik S, Cuervo AM. Proteostasis and aging. Nat Med. 2015;21:1406–15. https://doi.org/10.1038/nm.4001.
Dubrey SW, Hawkins PN, Falk RH. Amyloid diseases of the heart: assessment, diagnosis, and referral. Heart. 2011;97:75–84. https://doi.org/10.1136/hrt.2009.190405.
Vergaro G, Aimo A, Barison A, Genovesi D, Buda G, Passino C, Emdin M. Keys to early diagnosis of cardiac amyloidosis: red flags from clinical, laboratory and imaging findings. Eur J Prev Cardiol. 2020;27:1806–15. https://doi.org/10.1177/2047487319877708.
Fine NM. Challenges and strategies in the diagnosis of cardiac amyloidosis. Can J Cardiol. 2020;36:441–3. https://doi.org/10.1016/j.cjca.2019.09.017.
Nevone A, Merlini G, Nuvolone M. Treating protein misfolding diseases: therapeutic successes against systemic amyloidoses. Front Pharmacol. 2020;11:1024. https://doi.org/10.3389/fphar.2020.01024.
Xia K, Zhang S, Bathrick B, Liu S, Garcia Y, Colón W. Quantifying the kinetic stability of hyperstable proteins via time-dependent SDS trapping. Biochemistry. 2012;51:100–7. https://doi.org/10.1021/bi201362z.
Dalle-Donne I, Giustarini D, Colombo R, Rossi R, Milzani A. Protein carbonylation in human diseases. Trends Mol Med. 2003;9:169–76. https://doi.org/10.1016/S1471-4914(03)00031-5.
Fan R, Schrott LM, Snelling S, Felty J, Graham D, McGauly PL, Arnold T, Korneeva NL. Carbonyl-protein content increases in brain and blood of female rats after chronic oxycodone treatment. BMC Neurosci. 2020;21:4. https://doi.org/10.1186/s12868-020-0552-2.
Basisty NB, Liu Y, Reynolds J, Karunadharma PP, Dai D-F, Fredrickson J, Beyer RP, MacCoss MJ, Rabinovitch PS. Stable isotope labeling reveals novel insights into ubiquitin-mediated protein aggregation with age, calorie restriction, and rapamycin treatment. J Gerontol Ser A. 2018;73:561–70. https://doi.org/10.1093/gerona/glx047.
Weekes J, Morrison K, Mullen A, Wait R, Barton P, Dunn MJ. Hyperubiquitination of proteins in dilated cardiomyopathy. Proteomics. 2003;3:208–16. https://doi.org/10.1002/pmic.200390029.
Walther DM, Kasturi P, Zheng M, Pinkert S, Vecchi G, Ciryam P, Morimoto RI, Dobson CM, Vendruscolo M, Mann M, Hartl FU. Widespread proteome remodeling and aggregation in aging C. elegans. Cell. 2015;161:919–32. https://doi.org/10.1016/j.cell.2015.03.032.
Eulitz M, Weiss DT, Solomon A. Immunoglobulin heavy-chain-associated amyloidosis. Proc Natl Acad Sci. 1990;87:6542–6. https://doi.org/10.1073/pnas.87.17.6542.
Glenner GG, Terry W, Harada M, Isersky C, Page D. Amyloid fibril proteins proof of homology with immunoglobulin light chains by sequence analyses. Science (80). 1971;172:1150–1. https://doi.org/10.1126/science.172.3988.1150.
Glenner GG, Harbaugh J, Ohms JI, Harada M, Cuatrecasas P. An amyloid protein: the amino-terminal variable fragment of an immunoglobulin light chain. Biochem Biophys Res Commun. 1970;41:1287–9. https://doi.org/10.1016/0006-291X(70)90227-5.
Hasib Sidiqi M, Gertz MA. Immunoglobulin light chain amyloidosis diagnosis and treatment algorithm 2021. Blood Cancer J. 2021;11:90. https://doi.org/10.1038/s41408-021-00483-7.
Hammadah M, Fan Y, Wu Y, Hazen SL, Tang WHW. Prognostic value of elevated serum ceruloplasmin levels in patients with heart failure. J Card Fail. 2014;20:946–52. https://doi.org/10.1016/j.cardfail.2014.08.001.
Suzuki S, Hashizume N, Kanzaki Y, Maruyama T, Kozuka A, Yahikozawa K. Prognostic significance of serum albumin in patients with stable coronary artery disease treated by percutaneous coronary intervention. PLoS ONE. 2019;14:e0219044. https://doi.org/10.1371/journal.pone.0219044.
Dabbs RA, Wyatt AR, Yerbury JJ, Ecroyd H, Wilson MR. Extracellular chaperones. Top Curr Chem. 2013;328:241–68. https://doi.org/10.1007/128_2011_262.
Wilson MR, Yerbury JJ, Poon S. Potential roles of abundant extracellular chaperones in the control of amyloid formation and toxicity. Mol Biosyst. 2008;4:42–52. https://doi.org/10.1039/B712728F.
Mannini B, Chiti F. Chaperones as suppressors of protein misfolded oligomer toxicity. Front Mol Neurosci. 2017;10:98. https://doi.org/10.3389/fnmol.2017.00098.
Yerbury JJ, Ooi L, Dillin A, Saunders DN, Hatters DM, Beart PM, Cashman NR, Wilson MR, Ecroyd H. Walking the tightrope: proteostasis and neurodegenerative disease. J Neurochem. 2016;137:489–505. https://doi.org/10.1111/jnc.13575.
Langlois MR, Delanghe JR. Biological and clinical significance of haptoglobin polymorphism in humans. Clin Chem. 1996;42:1589–600. https://doi.org/10.1093/clinchem/42.10.1589.
di Masi A, De Simone G, Ciaccio C, D’Orso S, Coletta M, Ascenzi P. Haptoglobin: From hemoglobin scavenging to human health. Mol Aspects Med. 2020;73:100851. https://doi.org/10.1016/j.mam.2020.100851.
Spagnuolo MS, Maresca B, La Marca V, Carrizzo A, Veronesi C, Cupidi C, Piccoli T, Maletta RG, Bruni AC, Abrescia P, Cigliano L. Haptoglobin interacts with apolipoprotein E and beta-amyloid and influences their crosstalk. ACS Chem Neurosci. 2014;5:837–47. https://doi.org/10.1021/cn500099f.
Haas B, Serchi T, Wagner DR, Gilson G, Planchon S, Renaut J, Hoffmann L, Bohn T, Devaux Y. Proteomic analysis of plasma samples from patients with acute myocardial infarction identifies haptoglobin as a potential prognostic biomarker. J Proteomics. 2011;75:229–36. https://doi.org/10.1016/j.jprot.2011.06.028.
Yerbury JJ, Rybchyn MS, Easterbrook-Smith SB, Henriques C, Wilson MR. The acute phase protein haptoglobin is a mammalian extracellular chaperone with an action similar to clusterin. Biochemistry. 2005;44:10914–25. https://doi.org/10.1021/bi050764x.
Hummelshoj T, Fog LM, Madsen HO, Sim RB, Garred P. Comparative study of the human ficolins reveals unique features of ficolin-3 (Hakata antigen). Mol Immunol. 2008;45:1623–32. https://doi.org/10.1016/j.molimm.2007.10.006.
Endo Y, Matsushita M, Fujita T. New insights into the role of ficolins in the lectin pathway of innate immunity. Int Rev Cell Mol Biol. 2015;316:49–110. https://doi.org/10.1016/bs.ircmb.2015.01.003.
Acknowledgements
This work was supported by a grant from the Portuguese Foundation for Science and Technology [PTDC/MEC- CAR/30011/2017], financed by FCT and co-financed by the FEDER under the new Partnership Agreement PT2020 within the project POCI- 01-0145-FEDER-030011 and the research units iBiMED (UID/BIM/04501/2020), LAV-REQUIMTE (UIDB/50006/2020), CIAFEL (UIDB/00617/2020), and UMIB (UIDB/00215/2020 and UIDP/00215/2020), financed by national funds through the FCT. MG and MT are supported by the Ph.D. FCT grant SFRH/BD/128893/2017 and 2020.08565.BD, respectively. CS is supported by an individual grant from CAPES [BEX 0554/14-6].
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of Interest
The authors declare no competing interests.
Additional information
Associate Editor Jozine ter Maaten oversaw the review of this article.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Mário Santos, Sandra Vieira and Fernando Ribeiro are equally contributing authors
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Gouveia, M., Schmidt, C., Teixeira, M. et al. Characterization of Plasma SDS-Protein Aggregation Profile of Patients with Heart Failure with Preserved Ejection Fraction. J. of Cardiovasc. Trans. Res. 16, 698–714 (2023). https://doi.org/10.1007/s12265-022-10334-w
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12265-022-10334-w