Skip to main content
Log in

CD137 Signal Mediates Cardiac Ischemia–Reperfusion Injury by Regulating the Necrosis of Cardiomyocytes

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

The injury of cardiomyocytes after ischemia–reperfusion is the main reason of cardiac dysfunction. Necrosis is one of the methods of programmed cell death and cardiomyocyte necrosis occurs in the process of reperfusion. The activation of CD137 signal is involved in various diseases. In vivo experiments proved that CD137-/- mice have less heart damage than wild-type mice after ischemia–reperfusion. In vitro experiments, we found that after inhibiting the CD137 signal, the degree of necrosis of HL-1 cells was reduced and it was caused by reducing the Ca2 + overload in the mitochondria, which caused the reduction of mPTP opening. Ca2 + overload in mitochondria induced by activation of CD137 signal was caused by increased Ca2 + released into mitochondria by activation of IP3R and increased MCU level. These results indicate that CD137 signaling aggravates cardiac ischemia–reperfusion injury by inducing myocardial cell necrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

PCI:

Percutaneous coronary intervention

AMI:

Acute myocardial infarction

ROS:

Reactive oxygen species

mPTP:

Mitochondrial permeability transition pore

VDAC:

Voltage-dependent anion channel

ANT:

Adenine nucleoside translocation protein

CyPD:

Cyclophilin D

TNFRSF:

Tumor necrosis factor receptor superfamily

MAMs:

Mitochondria-associated ER membranes

IP3R:

Inositol-1,4,5-triphosphate receptor

ER:

Endoplasmic reticulum

NCLX:

Mitochondrial sodium–calcium–lithium exchangers

References

  1. Wang, K., Li, Y., Qiang, T., Chen, J., & Wang, X. (2021). Role of epigenetic regulation in myocardial ischemia/reperfusion injury. Pharmacological Research, 170, 105743. https://doi.org/10.1016/j.phrs.2021.105743

    Article  CAS  PubMed  Google Scholar 

  2. Zhao, T., Wei, Wu., Sui, L., et al. (2021). Reactive oxygen species-based nanomaterials for the treatment of myocardial ischemia reperfusion injuries. Bioactive Materials, 7, 47–72. https://doi.org/10.1016/j.bioactmat.2021.06.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Aldakkak, M., Camara, A. K. S., Heisner, J. S., Yang, M., & Stowe, D. F. (2011). Ranolazine reduces Ca2+ overload and oxidative stress and improves mitochondrial integrity to protect against ischemia reperfusion injury in isolated hearts. Pharmacological Research, 64(4), 381–92. https://doi.org/10.1016/j.phrs.2011.06.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wallert, M., Ziegler, M., Wang, X., et al. (2019). α-Tocopherol preserves cardiac function by reducing oxidative stress and inflammation in ischemia/reperfusion injury. Redox Biology, 26, 101292. https://doi.org/10.1016/j.redox.2019.101292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hummitzsch, L., Zitta, K., Fritze, L., et al. (2021). Effects of remote ischemic preconditioning (RIPC) and chronic remote ischemic preconditioning (cRIPC) on levels of plasma cytokines, cell surface characteristics of monocytes and in-vitro angiogenesis: A pilot study. Basic Research in Cardiology, 116(1), 60. https://doi.org/10.1007/s00395-021-00901-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ran, J., Xu, H., & Li, W. (2021). Cardioprotective effects of co-administration of thymoquinone and ischemic postconditioning in diabetic rats. Iranian Journal of Basic Medical Sciences, 24(7), 892–899. https://doi.org/10.22038/ijbms.2021.47670.10981

    Article  PubMed  PubMed Central  Google Scholar 

  7. Tonnus, W., Meyer, C., Paliege, A., et al. (2019). The pathological features of regulated necrosis. The Journal of Pathology, 247(5), 697–707. https://doi.org/10.1002/path.5248

    Article  CAS  PubMed  Google Scholar 

  8. Gao, X.-Q., Liu, C.-Y., Zhang, Y.-H., et al. (2021). The circRNA CNEACR regulates necroptosis of cardiomyocytes through Foxa2 suppression. Cell Death and Differentiation. https://doi.org/10.1038/s41418-021-00872-2

    Article  PubMed  PubMed Central  Google Scholar 

  9. Tao, Xu., Ding, W., Ao, X., Chu, X., et al. (2019). ARC regulates programmed necrosis and myocardial ischemia/reperfusion injury through the inhibition of mPTP opening. Redox Biology, 20, 414–426. https://doi.org/10.1016/j.redox.2018.10.023

    Article  CAS  Google Scholar 

  10. Wang, J.-X., Zhang, X.-J., Li, Q., et al. (2015). MicroRNA-103/107 Regulate Programmed Necrosis and Myocardial Ischemia/Reperfusion Injury Through Targeting FADD. Circulation Research, 117(4), 352–363. https://doi.org/10.1161/CIRCRESAHA.117.305781

    Article  CAS  PubMed  Google Scholar 

  11. Comità, S., Femmino, S., Thairi, C., et al. (2021). Regulation of STAT3 and its role in cardioprotection by conditioning: Focus on non-genomic roles targeting mitochondrial function. Basic Research in Cardiology, 116(1), 56. https://doi.org/10.1007/s00395-021-00898-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ale-Agha, N., Jakobs, P., Goy, C., et al. (2021). Mitochondrial Telomerase Reverse Transcriptase Protects from Myocardial Ischemia/reperfusion Injury by Improving Complex I Composition and Function. Circulation. https://doi.org/10.1161/CIRCULATIONAHA.120.051923

    Article  PubMed  Google Scholar 

  13. Marin, W., Marin, D., Ao, X., & Liu, Y. (2021). Mitochondria as a therapeutic target for cardiac ischemia-reperfusion injury (Review). International Journal of Molecular Medicine, 47(2), 485–499. https://doi.org/10.3892/ijmm.2020.4823

    Article  CAS  PubMed  Google Scholar 

  14. Li-Qun, Lu., Tian, J., Luo, X.-J., & Peng, J. (2021). Targeting the pathways of regulated necrosis: a potential strategy for alleviation of cardio-cerebrovascular injury. Cellular and Molecular Life Sciences, 78(1), 63–78. https://doi.org/10.1007/s00018-020-03587-8

    Article  CAS  Google Scholar 

  15. Sun, T., Ding, W., Tao, Xu., et al. (2019). Parkin Regulates Programmed Necrosis and Myocardial Ischemia/Reperfusion Injury by Targeting Cyclophilin-D. Antioxidants & Redox Signaling, 31(16), 1177–1193. https://doi.org/10.1089/ars.2019.7734

    Article  CAS  Google Scholar 

  16. Yu, Xu., Zhang, Y., Yao, Xu., et al. (2021). Activation of CD137 signaling promotes macrophage apoptosis dependent on p38 MAPK pathway-mediated mitochondrial fission. International Journal of Biochemistry & Cell Biology, 136, 106003. https://doi.org/10.1016/j.biocel.2021.106003

    Article  CAS  Google Scholar 

  17. Chen, R., Yao, Xu., Zhong, W., et al. (2018). Activation of CD137 Signaling Enhances Vascular Calcification through c-Jun N-Terminal Kinase-Dependent Disruption of Autophagic Flux. Mediators of Inflammation, 2018, 8407137. https://doi.org/10.1155/2018/8407137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Teijeira, A., Labiano, S., Garasa, S., et al. (2018). Mitochondrial Morphological and Functional Reprogramming Following CD137 (4–1BB) Costimulation. Cancer Immunology Research, 6(7), 798–811. https://doi.org/10.1158/2326-6066.CIR-17-0767

    Article  CAS  PubMed  Google Scholar 

  19. Wu, X., Iroegbu, C. D., Peng, J., Guo, J., Yang, J., & Fan, C. (2021). Cell Death and Exosomes Regulation After Myocardial Infarction and Ischemia-Reperfusion. Frontiers in Cell and Developmental Biology, 9, 673677. https://doi.org/10.3389/fcell.2021.673677

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ugolini, A., & Nuti, M. (2021). CD137 T-Cells: Protagonists of the Immunotherapy Revolution. Cancers (Basel)., 13(3), 456. https://doi.org/10.3390/cancers13030456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li, Bo., Zang, G., Zhong, W., et al. (2020). Activation of CD137 signaling promotes neointimal formation by attenuating TET2 and transferrring from endothelial cell-derived exosomes to vascular smooth muscle cells. Biomedicine & Pharmacotherapy, 121, 109593. https://doi.org/10.1016/j.biopha.2019.109593

    Article  CAS  Google Scholar 

  22. Liangjie, Xu., Geng, T., Zang, G., et al. (2020). Exosome derived from CD137-modified endothelial cells regulates the Th17 responses in atherosclerosis. Journal of Cellular and Molecular Medicine, 24(8), 4659–4667. https://doi.org/10.1111/jcmm.15130

    Article  CAS  Google Scholar 

  23. Yan, J., Wang, C., Wang, Z., & Yuan, W. (2013). The effect of CD137-CD137 ligand interaction on phospholipase C signaling pathway in human endothelial cells. Chemico-Biological Interactions, 206(2), 256–261. https://doi.org/10.1016/j.cbi.2013.09.014

    Article  CAS  PubMed  Google Scholar 

  24. Wang, J., & Zhou, H. (2020). Mitochondrial quality control mechanisms as molecular targets in cardiac ischemia-reperfusion injury. Acta Pharmaceutica Sinica B, 10(10), 1866–1879. https://doi.org/10.1016/j.apsb.2020.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kuznetsov, A. V., Javadov, S., Margreiter, R., Grimm, M., Hagenbuchner, J., & Ausserlechner, M. J. (2019). The Role of Mitochondria in the Mechanisms of Cardiac Ischemia-Reperfusion Injury. Antioxidants (Basel)., 8(10), 454. https://doi.org/10.3390/antiox8100454

    Article  CAS  PubMed Central  Google Scholar 

  26. Javadov, S., Karmazyn, M., & Escobales, N. (2009). Mitochondrial permeability transition pore opening as a promising therapeutic target in cardiac diseases. Journal of Pharmacology and Experimental Therapeutics, 330(3), 670–678. https://doi.org/10.1124/jpet.109.153213

    Article  CAS  PubMed  Google Scholar 

  27. Zhou, H., Li, D., Zhu, P., et al. (2018). Inhibitory effect of melatonin on necroptosis via repressing the Ripk3-PGAM5-CypD-mPTP pathway attenuates cardiac microvascular ischemia-reperfusion injury. Journal of Pineal Research, 65(3), e12503. https://doi.org/10.1111/jpi.12503

    Article  CAS  PubMed  Google Scholar 

  28. Nakagawa, T., Shimizu, S., Watanabe, T., et al. (2005). Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature, 434(7033), 652–658. https://doi.org/10.1038/nature03317

    Article  CAS  PubMed  Google Scholar 

  29. Baines, C. P., Kaiser, R. A., Purcell, N. H., et al. (2005). Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature., 434(7033), 658–62. https://doi.org/10.1038/nature03434

    Article  CAS  PubMed  Google Scholar 

  30. Hurst, S., Gonnot, F., Dia, M., Silva, C. C. D., Gomez, L., & Sheu, S.-S. (2020). Phosphorylation of cyclophilin D at serine 191 regulates mitochondrial permeability transition pore opening and cell death after ischemia-reperfusion. Cell Death & Disease, 11(8), 661. https://doi.org/10.1038/s41419-020-02864-5

    Article  CAS  Google Scholar 

  31. Kerkhofs, M., Bittremieux, M., Morciano, G., et al. (2018). Emerging molecular mechanisms in chemotherapy: Ca signaling at the mitochondria-associated endoplasmic reticulum membranes. Cell Death & Disease, 9(3), 334. https://doi.org/10.1038/s41419-017-0179-0

    Article  CAS  Google Scholar 

  32. Gao, P., Yan, Z., & Zhu, Z. (2020). Mitochondria-Associated Endoplasmic Reticulum Membranes in Cardiovascular Diseases. Frontiers in Cell and Developmental Biology, 8, 604240. https://doi.org/10.3389/fcell.2020.604240

    Article  PubMed  PubMed Central  Google Scholar 

  33. Gomez, L., Thiebaut, P.-A., Paillard, M., et al. (2015). The SR/ER-mitochondria calcium crosstalk is regulated by GSK3β during reperfusion injury. Cell Death and Differentiation, 22(11), 1890. https://doi.org/10.1038/cdd.2015.118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Paillard, M., Tubbs, E., Thiebaut, P.-A., et al. (2013). Depressing mitochondria-reticulum interactions protects cardiomyocytes from lethal hypoxia-reoxygenation injury. Circulation, 128(14), 1555–1565. https://doi.org/10.1161/CIRCULATIONAHA.113.001225

    Article  CAS  PubMed  Google Scholar 

  35. Li, C., Ma, Q., Toan, S., Wang, J., Zhou, H., & Liang, J. (2020). SERCA overexpression reduces reperfusion-mediated cardiac microvascular damage through inhibition of the calcium/MCU/mPTP/necroptosis signaling pathways. Redox Biology, 36, 101659. https://doi.org/10.1016/j.redox.2020.101659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Yao Xu and Chen Shao designed the experiments. Yao Xu, Rui Chen and Guangyao Zang performed these experiments. The work of analyzing the data was completed by Yao Xu and Chen Shao. Yao Xu wrote this article. Chen Shao and Zhongqun Wang revised the article.

Funding

This project was supported by the National Natural Science Foundation of China (81970379), Natural Science Foundation of Jiangsu Province (BK20181227) and Medical Innovation Team Project of Jiangsu Province (CXTDA2017010).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chen Shao or Zhongqun Wang.

Ethics declarations

Disclosures

All authors are responsible for this manuscript and agree to publish.

Human Subjects Informed Consent Statement

No human studies were carried out by the authors for this article.

Animal Studies

This study was approved by the Ethics Committee of Jiangsu University and was conducted in accordance with institutional guidelines.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Associate Editor Yihua Bei oversaw the review of this article

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Yao Xu and Rui Chen contributed equally to this work and are joint first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Chen, R., Yan, J. et al. CD137 Signal Mediates Cardiac Ischemia–Reperfusion Injury by Regulating the Necrosis of Cardiomyocytes. J. of Cardiovasc. Trans. Res. 15, 1163–1175 (2022). https://doi.org/10.1007/s12265-022-10240-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-022-10240-1

Keywords

Navigation