Skip to main content

A New Minimally Invasive Method of Transverse Aortic Constriction in Mice

Abstract

Transverse aortic constriction (TAC) in mice is the most popular model to mimic pressure overload heart disease. In this study, we developed a convenient, quick, and less invasive new TAC mice model. Briefly, after anesthetization, endotracheal intubation was then performed, and the endotracheal tube was connected to a ventilator. The second intercostal space was opened and then the home-made retractors were used to push aside the thymus gently. A tunnel under the aortic arch was made and a segment of 6–0 monofilament polypropylene suture which had been threaded through a specifically modified blunted 26-gauge syringe needle was passed through the tunnel. A blunted 27-gauge needle was placed parallel to the transverse aorta and then three knots were tied quickly. After ligation, the spacer was removed promptly and gently to achieve a constriction of 0.4 mm in diameter. Five weeks after TAC, cardiac hypertrophy, fibrosis, and left ventricular dysfunction were observed.

Graphical abstract

The mouse was anesthetized with pentobarbital (50 mg/kg) via intraperitoneal injection. Endotracheal intubation under direct vision was then performed and the endotracheal tube was connected to a ventilator. The second intercostal space was opened and then the home-made retractors were used to push aside the thymus gently. A tunnel under the aortic arch was made and a segment of 6–0 monofilament polypropylene suture which had been threaded through a specifically modified blunted 26-gauge syringe needle was passed through the tunnel.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Abbreviations

TAC:

Transverse aortic constriction

LV:

Left ventricular

BCA:

Brachiocephalic artery

LCCA:

Left common carotid artery

LVIDd:

LV end-diastolic internal diameter

LVIDs:

LV end-systolic internal diameter

IVSd:

Interventricular septum end-diastolic thickness

IVSs:

Interventricular septum end-systolic thickness

LVPWd:

LV end-diastolic posterior wall thickness

LVPWs:

LV end-systolic posterior wall thickness

LVEDV:

LV end-diastolic volume

LVESV:

LV end-systolic volume

LVEF:

LV ejection fraction

LVFS:

LV fractional shortening

HW:

Heart weight

BW:

Body weight

TL:

Tibia length

H&E:

Hematoxylin-eosin

MT:

Masson’s trichrome

AAo:

Ascending aorta

References

  1. 1.

    Shimizu, I., & Minamino, T. (2016). Physiological and pathological cardiac hypertrophy. Journal of Molecular and Cellular Cardiology, 97, 245–262. https://doi.org/10.1016/j.yjmcc.2016.06.001

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Cuspidi, C., Sala, C., Negri, F., Mancia, G., & Morganti, A. (2012). Prevalence of left-ventricular hypertrophy in hypertension: An updated review of echocardiographic studies. Journal of Human Hypertension, 26(6), 343–349. https://doi.org/10.1038/jhh.2011.104

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Lackland, D. T., & Weber, M. A. (2015). Global burden of cardiovascular disease and stroke: Hypertension at the core. Canadian Journal of Cardiology, 31(5), 569–571. https://doi.org/10.1016/j.cjca.2015.01.009

    Article  Google Scholar 

  4. 4.

    Mills, K. T., Bundy, J. D., Kelly, T. N., Reed, J. E., Kearney, P. M., Reynolds, K., et al. (2016). Global disparities of hypertension prevalence and control: A systematic analysis of population-based studies from 90 countries. Circulation, 134(6), 441–450. https://doi.org/10.1161/circulationaha.115.018912

    Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Sorrentino, M. J. (2019). The evolution from hypertension to heart failure. Heart Failure Clinics, 15(4), 447–453. https://doi.org/10.1016/j.hfc.2019.06.005

    Article  PubMed  Google Scholar 

  6. 6.

    Muiesan, M. L., Salvetti, M., Rizzoni, D., Paini, A., Agabiti-Rosei, C., Aggiusti, C., et al. (2013). Resistant hypertension and target organ damage. Hypertension Research, 36(6), 485–491. https://doi.org/10.1038/hr.2013.30

    Article  PubMed  Google Scholar 

  7. 7.

    Zhou, B., Perel, P., Mensah, G. A., & Ezzati, M. (2021). Global epidemiology, health burden and effective interventions for elevated blood pressure and hypertension. Nature Reviews. Cardiology. https://doi.org/10.1038/s41569-021-00559-8

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Laurent, S. (2017). Antihypertensive drugs. Pharmacological Research, 124, 116–125. https://doi.org/10.1016/j.phrs.2017.07.026

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Rockman, H. A., Ross, R. S., Harris, A. N., Knowlton, K. U., Steinhelper, M. E., Field, L. J., et al. (1991). Segregation of atrial-specific and inducible expression of an atrial natriuretic factor transgene in an in vivo murine model of cardiac hypertrophy. Proceedings of the National Academy of Sciences of the United States of America, 88(18), 8277–8281. https://doi.org/10.1073/pnas.88.18.8277

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Molinari, F., Malara, N., Mollace, V., Rosano, G., & Ferraro, E. (2016). Animal models of cardiac cachexia. International Journal of Cardiology, 219, 105–110. https://doi.org/10.1016/j.ijcard.2016.05.071

    Article  PubMed  Google Scholar 

  11. 11.

    Laroumanie, F., Douin-Echinard, V., Pozzo, J., Lairez, O., Tortosa, F., Vinel, C., et al. (2014). CD4+ T cells promote the transition from hypertrophy to heart failure during chronic pressure overload. Circulation, 129(21), 2111–2124. https://doi.org/10.1161/circulationaha.113.007101

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    deAlmeida, A. C., van Oort, R. J., & Wehrens, X. H. (2010). Transverse aortic constriction in mice. Journal of Visualized Experiments: JoVE, (38). https://doi.org/10.3791/1729

  13. 13.

    Eichhorn, L., Weisheit, C. K., Gestrich, C., Peukert, K., Duerr, G. D., Ayub, M. A., et al. (2018). A closed-chest model to induce transverse aortic constriction in mice. Journal of Visualized Experiments: JoVE, (134). https://doi.org/10.3791/57397

  14. 14.

    Tavakoli, R., Nemska, S., Jamshidi, P., Gassmann, M., Frossard, N. (2017). Technique of minimally invasive transverse aortic constriction in mice for induction of left ventricular hypertrophy. Journal of Visualized Experiments: JoVE, (127). https://doi.org/10.3791/56231

  15. 15.

    Zaw, A. M., Williams, C. M., Law, H. K., Chow, B. K. (2017). Minimally invasive transverse aortic constriction in mice. Journal of Visualized Experiments: JoVE, (121). https://doi.org/10.3791/55293

  16. 16.

    Hill, J. A., & Olson, E. N. (2008). Cardiac plasticity. New England Journal of Medicine, 358(13), 1370–1380. https://doi.org/10.1056/NEJMra072139

    CAS  Article  Google Scholar 

  17. 17.

    You, J., Wu, J., Zhang, Q., Ye, Y., Wang, S., Huang, J., et al. (2018). Differential cardiac hypertrophy and signaling pathways in pressure versus volume overload. American Journal of Physiology. Heart and Circulatory Physiology, 314(3), H552–H562. https://doi.org/10.1152/ajpheart.00212.2017

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Xiang, F. L., Fang, M., & Yutzey, K. E. (2017). Loss of β-catenin in resident cardiac fibroblasts attenuates fibrosis induced by pressure overload in mice. Nature Communications, 8(1), 712. https://doi.org/10.1038/s41467-017-00840-w

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Toischer, K., Rokita, A. G., Unsöld, B., Zhu, W., Kararigas, G., Sossalla, S., et al. (2010). Differential cardiac remodeling in preload versus afterload. Circulation, 122(10), 993–1003. https://doi.org/10.1161/circulationaha.110.943431

    Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Muthuramu, I., Amin, R., Aboumsallem, J. P., Mishra, M., Robinson, E. L., & De Geest, B. (2018). Hepatocyte-specific SR-BI gene transfer corrects cardiac dysfunction in Scarb1-deficient mice and improves pressure overload-induced cardiomyopathy. Arteriosclerosis, Thrombosis, and Vascular Biology, 38(9), 2028–2040. https://doi.org/10.1161/atvbaha.118.310946

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Kong, P., Christia, P., & Frangogiannis, N. G. (2014). The pathogenesis of cardiac fibrosis. Cellular and Molecular Life Sciences, 71(4), 549–574. https://doi.org/10.1007/s00018-013-1349-6

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    López, B., Ravassa, S., Moreno, M. U., José, G. S., Beaumont, J., González, A., et al. (2021). Diffuse myocardial fibrosis: Mechanisms, diagnosis and therapeutic approaches. Nature Reviews. Cardiology. https://doi.org/10.1038/s41569-020-00504-1

    Article  PubMed  Google Scholar 

  23. 23.

    Osterholt, M., Nguyen, T. D., Schwarzer, M., & Doenst, T. (2013). Alterations in mitochondrial function in cardiac hypertrophy and heart failure. Heart Failure Reviews, 18(5), 645–656. https://doi.org/10.1007/s10741-012-9346-7

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Bakris, G., Ali, W., & Parati, G. (2019). ACC/AHA versus ESC/ESH on hypertension guidelines: JACC guideline comparison. Journal of the American College of Cardiology, 73(23), 3018–3026. https://doi.org/10.1016/j.jacc.2019.03.507

    Article  PubMed  Google Scholar 

  25. 25.

    Palmer, S., Albergante, L., Blackburn, C. C., & Newman, T. J. (2018). Thymic involution and rising disease incidence with age. Proceedings of the National Academy of Sciences of the United States of America, 115(8), 1883–1888. https://doi.org/10.1073/pnas.1714478115

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Miller, J. (2020). The function of the thymus and its impact on modern medicine. Science, 369(6503), eaba2429.

    CAS  Article  Google Scholar 

  27. 27.

    Dai, X., Hua, L., Chen, Y., Wang, J., Li, J., Wu, F., et al. (2018). Mechanisms in hypertension and target organ damage: Is the role of the thymus key? (Review). International Journal of Molecular Medicine, 42(1), 3–12. https://doi.org/10.3892/ijmm.2018.3605

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Miller, J. F., & Osoba, D. (1967). Current concepts of the immunological function of the thymus. Physiological Reviews, 47(3), 437–520. https://doi.org/10.1152/physrev.1967.47.3.437

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Frieler, R. A., & Mortensen, R. M. (2015). Immune cell and other noncardiomyocyte regulation of cardiac hypertrophy and remodeling. Circulation, 131(11), 1019–1030. https://doi.org/10.1161/circulationaha.114.008788

    Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Takahashi, M., Kinugawa, S., Takada, S., Kakutani, N., Furihata, T., Sobirin, M. A., et al. (2020). The disruption of invariant natural killer T cells exacerbates cardiac hypertrophy and failure caused by pressure overload in mice. Experimental Physiology, 105(3), 489–501. https://doi.org/10.1113/ep087652

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Bosch, L., de Haan, J., Seijkens, T., van Tiel, C., Brans, M., Pasterkamp, G., et al. (2019). Small molecule-mediated inhibition of CD40-TRAF6 reduces adverse cardiac remodelling in pressure overload induced heart failure. International Journal of Cardiology, 279, 141–144. https://doi.org/10.1016/j.ijcard.2018.12.076

    Article  PubMed  Google Scholar 

  32. 32.

    Noll, N. A., Lal, H., & Merryman, W. D. (2020). Mouse models of heart failure with preserved or reduced ejection fraction. American Journal of Pathology, 190(8), 1596–1608. https://doi.org/10.1016/j.ajpath.2020.04.006

    CAS  Article  Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Foundation of China (Grant No. 81770319).

Author information

Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Huayang Li, Quan Liu, and Shunjun Wang carried out the experiments. Lin Huang, Yuan Yue, Suiqing Huang, and Kangni Feng helped with the material preparation, data collection, and analysis. The first draft of the manuscript was written by Huayang Li, and all authors commented on previous versions of the manuscript. Zhongkai Wu contributed substantially to the conception, design of the study, acquired funding, supervised the study, and edited the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zhongkai Wu.

Ethics declarations

No human studies were carried out by the authors for this article.

Ethics Approval for Use of Animals

All institutional and national guidelines for the care and use of laboratory animals were followed and approved by the Institutional Animal Use and Care Committee of Sun Yat-sen University (2019001114).

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Huayang Li and Quan Liu contributed equally to this article.

Electronic Supplementary Material

(MP4 521 mb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, H., Liu, Q., Wang, S. et al. A New Minimally Invasive Method of Transverse Aortic Constriction in Mice. J. of Cardiovasc. Trans. Res. (2021). https://doi.org/10.1007/s12265-021-10170-4

Download citation

Keywords

  • Transverse aortic constriction
  • Mice
  • Surgery