Skip to main content

Potential of Phage Display Antibody Technology for Cardiovascular Disease Immunotherapy

Abstract

Cardiovascular disease (CVD) is one of the leading causes of death worldwide. CVD includes coronary artery diseases such as angina, myocardial infarction, and stroke. “Lipid hypothesis” which is also known as the cholesterol hypothesis proposes the linkage of plasma cholesterol level with the risk of developing CVD. Conventional management involves the use of statins to reduce the serum cholesterol levels as means for CVD prevention or treatment. The regulation of serum cholesterol levels can potentially be regulated with biological interventions like monoclonal antibodies. Phage display is a powerful tool for the development of therapeutic antibodies with successes over the recent decade. Although mainly for oncology, the application of monoclonal antibodies as immunotherapeutic agents could potentially be expanded to CVD. This review focuses on the concept of phage display for antibody development and discusses the potential target antigens that could potentially be beneficial for serum cholesterol management.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. 1.

    Balakumar, P., Maung-U, K., & Jagadeesh, G. (2016). Prevalence and prevention of cardiovascular disease and diabetes mellitus. Pharmacological Research, 113, 600–9.

    PubMed  Article  PubMed Central  Google Scholar 

  2. 2.

    Bentzon, J. F., Otsuka, F., Virmani, R., & Falk, E. (2014). Mechanisms of plaque formation and rupture. Circulation Research., 114(12), 1852–66.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  3. 3.

    Stock, J. (2019). Triglycerides and cardiovascular risk: Apolipoprotein B holds the key. Atherosclerosis., 284, 221–2.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  4. 4.

    Yu, M., Liang, C., Kong, Q., Wang, Y., & Li, M. (2020). Efficacy of combination therapy with ezetimibe and statins versus a double dose of statin monotherapy in participants with hypercholesterolemia: A meta-analysis of literature. Lipids in Health and Disease., 19(1), 1–7.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  5. 5.

    Kanagalingam, T., Lazarte, J., Wong, D. K., & Hegele, R. A. (2021). Liver injury associated with ezetimibe monotherapy. CJC Open., 3(2), 195–7.

    PubMed  Article  PubMed Central  Google Scholar 

  6. 6.

    Akyea, R. K., Kai, J., Qureshi, N., Iyen, B., & Weng, S. F. (2019). Sub-optimal cholesterol response to initiation of statins and future risk of cardiovascular disease. Heart., 105(13), 975–81.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  7. 7.

    Camerino, G. M., Tarantino, N., Canfora, I., De Bellis, M., Musumeci, O., & Pierno, S. (2021). Statin-induced myopathy: Translational Studies from preclinical to clinical evidence. International Journal of Molecular Sciences., 22(4), 2070–89.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Crandall, J., Mather, K., Rajpathak, S., Goldberg, R., Watson, K., Foo, S., et al. (2017). Statin use and risk of developing diabetes: Results from the Diabetes Prevention Program. The BMJ Open Diabetes Research and Care, 5(1), e000438–47.

    PubMed  Article  PubMed Central  Google Scholar 

  9. 9.

    V Willrich, M. A., Kaleta, E. J., Bryant, S. C., Spears, G. M., Train, L. J., Peterson, S. E., et al. (2018). Genetic variation in statin intolerance and a possible protective role for UGT1A1. Pharmacogenomics, 19(2), 83–94.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  10. 10.

    Reiner, Ž. (2014). Resistance and intolerance to statins. Nutrition, Metabolism, and Cardiovascular Diseases., 24(10), 1057–66.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. 11.

    Suh, S., Jung, C. H., Hong, S.-J., Kim, J.-S., & Choi, S. (2018). Statin intolerance: An overview of the current status and possible treatment options. The Journal of Lipid and Atherosclerosis, 7(2), 77–87.

    Article  Google Scholar 

  12. 12.

    Patel, P. H., Nguyen, M., Rodriguez, R., Surani, S., & Udeani, G. (2021). Omecamtiv mecarbil: A novel mechanistic and therapeutic approach to chronic heart failure management. Cureus., 13(1), e12419-27.

    PubMed  PubMed Central  Google Scholar 

  13. 13.

    Machaj, F., Dembowska, E., Rosik, J., Szostak, B., Mazurek-Mochol, M., & Pawlik, A. (2019). New therapies for the treatment of heart failure: A summary of recent accomplishments. Therapeutics and Clinical Risk Management., 15, 147–55.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. 14.

    Abdul-Ghani, M., Suen, C., Jiang, B., Deng, Y., Weldrick, J. J., Putinski, C., et al. (2017). Cardiotrophin 1 stimulates beneficial myogenic and vascular remodeling of the heart. Cell Research, 27(10), 1195–215.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Felker, G. M., Mentz, R. J., Cole, R. T., Adams, K. F., Egnaczyk, G. F., Fiuzat, M., et al. (2017). Efficacy and safety of tolvaptan in patients hospitalized with acute heart failure. Journal of the American College of Cardiology., 69(11), 1399–406.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. 16.

    Metra, M., Teerlink, J. R., Cotter, G., Davison, B. A., Felker, G. M., Filippatos, G., et al. (2019). Effects of serelaxin in patients with acute heart failure. The New England Journal of Medicine, 381(8), 716–26.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. 17.

    Packer, M., O’Connor, C., McMurray, J. J. V., Wittes, J., Abraham, W. T., Anker, S. D., et al. (2017). Effect of ularitide on cardiovascular mortality in acute heart failure. The New England Journal of Medicine, 376(20), 1956–64.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. 18.

    Mullard, A. (2021). FDA approves 100th monoclonal antibody product. Nature Reviews Drug Discovery, 20(7), 491–95.

  19. 19.

    Sabatine, M. S., Giugliano, R. P., Keech, A. C., Honarpour, N., Wiviott, S. D., Murphy, S. A., et al. (2017). Evolocumab and clinical outcomes in patients with cardiovascular disease. The New England Journal of Medicine, 376(18), 1713–22.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  20. 20.

    Guedeney, P., Sorrentino, S., Giustino, G., Chapelle, C., Laporte, S., Claessen, B. E., et al. (2021). Indirect comparison of the efficacy and safety of alirocumab and evolocumab: A systematic review and network meta-analysis. European Heart Journal - Cardiovascular Pharmacotherapy, 7(3), 225–35.

  21. 21.

    Karathanos, A., Lin, Y., Dannenberg, L., Parco, C., Schulze, V., Brockmeyer, M., et al. (2019). Routine glycoprotein IIb/IIIa inhibitor therapy in ST-segment elevation myocardial infarction: A meta-analysis. Canadian Journal of Cardiology., 35(11), 1576–88.

    Article  Google Scholar 

  22. 22.

    Saleiro, C., Teixeira, R., De Campos, D., Lopes, J., Oliveiros, B., Costa, M., et al. (2020). Glycoprotein IIb/IIIa inhibitors for cardiogenic shock complicating acute myocardial infarction: A systematic review, meta-analysis, and meta-regression. Journal of Intensive Care, 8(1), 85–97.

    Article  Google Scholar 

  23. 23.

    Watts, G. F., Chan, D. C., Pang, J., Ma, L., Ying, Q., Aggarwal, S., et al. (2020). PCSK9 Inhibition with alirocumab increases the catabolism of lipoprotein (a) particles in statin-treated patients with elevated lipoprotein (a). Metabolism., 107, 154221–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. 24.

    Fenn, K. M., & Kalinsky, K. (2019). Sacituzumab govitecan: Antibody-drug conjugate in triple negative breast cancer and other solid tumors. Drugs of Today, 55(9), 575–85.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  25. 25.

    Ferri, N., Bellosta, S., Baldessin, L., Boccia, D., Racagni, G., & Corsini, A. (2016). Pharmacokinetics interactions of monoclonal antibodies. Pharmacological Research., 111, 592–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26.

    Hoy, S. M. (2015). Canakinumab: A review of its use in the management of systemic juvenile idiopathic arthritis. BioDrugs, 29(2), 133–42.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  27. 27.

    Seok, J. K., Kang, H. C., Cho, Y.-Y., Lee, H. S., & Lee, J. Y. (2021). Therapeutic regulation of the NLRP3 inflammasome in chronic inflammatory diseases. Archives of Pharmacal Research, 44(1), 16–35.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Lutgens, E., Atzler, D., Döring, Y., Duchene, J., Steffens, S., & Weber, C. (2019). Immunotherapy for cardiovascular disease. European Heart Journal., 40(48), 3937–46.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  29. 29.

    Khambhati, J., Engels, M., Allard-Ratick, M., Sandesara, P. B., Quyyumi, A. A., & Sperling, L. (2018). Immunotherapy for the prevention of atherosclerotic cardiovascular disease: Promise and possibilities. Atherosclerosis., 276, 1–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  30. 30.

    Gao, S., Zhao, D., Wang, M., Zhao, F., Han, X., Qi, Y., et al. (2017). Association between circulating oxidized LDL and atherosclerotic cardiovascular disease: A meta-analysis of observational studies. Canadian Journal of Cardiology., 33(12), 1624–32.

    Article  Google Scholar 

  31. 31.

    Roth, K. D. R., Wenzel, E. V., Ruschig, M., Steinke, S., Langreder, N., Heine, P. A., et al. (2021). Developing Recombinant Antibodies by Phage Display Against Infectious Diseases and Toxins for Diagnostics and Therapy. Frontiers in Cellular and Infection Microbiology, 11, 697876–914.

  32. 32.

    Parray, H. A., Shukla, S., Samal, S., Shrivastava, T., Ahmed, S., Sharma, C., et al. (2020). Hybridoma technology a versatile method for isolation of monoclonal antibodies, its applicability across species, limitations, advancement and future perspectives. International Immunopharmacology., 85, 106639–59.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33.

    Chen, W. C., & Murawsky, C. M. (2018). Strategies for generating diverse antibody repertoires using transgenic animals expressing human antibodies. Frontiers in Immunology, 9, 460–7.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  34. 34.

    Ledsgaard, L., Kilstrup, M., Karatt-Vellatt, A., McCafferty, J., & Laustsen, A. H. (2018). Basics of antibody phage display technology. Toxins., 10(6), 236–51.

    PubMed Central  Article  CAS  Google Scholar 

  35. 35.

    Nagano, K., & Tsutsumi, Y. (2021). Phage display technology as a powerful platform for antibody drug discovery. Viruses., 13(2), 178–94.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Porter, R. R. (1963). Chemical structure of gamma-globulin and antibodies. British Medical Bulletin, 19(3), 197–201.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. 37.

    Alzari, P. M., Lascombe, M. B., & Poljak, R. J. (1988). Three-dimensional structure of antibodies. Annual Review of Immunology., 6, 555–80.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  38. 38.

    Edelman, G. M., Cunningham, B. A., Gall, W. E., Gottlieb, P. D., Rutishauser, U., & Waxdal, M. J. (1969). The covalent structure of an entire gammaG immmunoglobulin molecule. Proceedings of the National Academy of Sciences of the United States of America, 63(1), 78–85.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Chiu, M. L., Goulet, D. R., Teplyakov, A., & Gilliland, G. L. (2019). Antibody structure and function: The basis for engineering therapeutics. Antibodies, 8(4), 55–133.

    CAS  PubMed Central  Article  Google Scholar 

  40. 40.

    Bruhns, P., & Jönsson, F. (2015). Mouse and human FcR effector functions. Immunology Reviews, 268(1), 25–51.

    CAS  Article  Google Scholar 

  41. 41.

    Hanson, Q. M, & Barb, A. W. (2015). A perspective on the structure and receptor binding properties of immunoglobulin G Fc. Biochemistry, 54(19), 2931–42.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  42. 42.

    Burton, D. R. (1985). Immunoglobulin G: Functional sites. Molecular Immunology, 22(3), 161–206.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  43. 43.

    Hoffman, W., Lakkis, F. G., & Chalasani, G. (2015). B cells, antibodies, and more. Clinical Journal of the American Society of Nephrology, 11(1), 137–54.

    PubMed  PubMed Central  Article  Google Scholar 

  44. 44.

    Nossal, G. J., & Lederberg, J. (1958). Antibody production by single cells. Nature., 181(4620), 1419–20.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  45. 45.

    Brack, C., Hirama, M., Lenhard-Schuller, R., & Tonegawa, S. (1978). A complete immunoglobulin gene is created by somatic mutation. Cell, 15(1), 1–14.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. 46.

    Watson, C. T., Glanville, J., & Marasco, W. A. (2017). The individual and population genetics of antibody immunity. Trends in Immunology, 38(7), 459–70.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47.

    Goodnow, C. C., Adelstein, S., & Basten, A. (1990). The need for central and peripheral tolerance in the B cell repertoire. Science, 248(4961), 1373–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  48. 48.

    Larijani, M., & Martin, A. (2012). The biochemistry of activation-induced deaminase and its physiological functions. Seminars in Immunology., 24(4), 255–63.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  49. 49.

    Chi, X., Li, Y., & Qiu, X. (2020). V (D) J recombination, somatic hypermutation and class switch recombination of immunoglobulins: Mechanism and regulation. Immunology., 160(3), 233–47.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. 50.

    Muramatsu, M., Sankaranand, V., Anant, S., Sugai, M., Kinoshita, K., Davidson, N. O., et al. (1999). Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells. The Journal of Biological Chemistry, 274(26), 18470–6.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  51. 51.

    Feng, Y., Seija, N., Di Noia, J.M., Martin, A. (2020). AID in antibody diversification: There and back again. Trends in Immunology, 41(7), 586–600.

  52. 52.

    Alfaleh, M. A., Alsaab, H. O., Mahmoud, A. B., Alkayyal, A. B., Jones, M. L., & Hashem, A. M. (2020). Phage display derived monoclonal antibodies: From bench to bedside. Frontiers in Immunology, 11, 1986–2023.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. 53.

    Xu, Y., Wang, D., Mason, B., Rossomando, T., Li, N., Liu, D., et al. (2019). Structure, heterogeneity and developability assessment of therapeutic antibodies. mAbs, 11(2), 239–64.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  54. 54.

    Jarasch, A., Koll, H., Regula, J. T., Bader, M., Papadimitriou, A., & Kettenberger, H. (2015). Developability assessment during the selection of novel therapeutic antibodies. Journal of Pharmaceutical Sciences., 104(6), 1885–98.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  55. 55

    Bailly, M., Mieczkowski, C., Juan, V., Metwally, E., Tomazela, D., Baker, J., et al. (2020). Predicting antibody developability profiles through early stage discovery screening. mAbs, 12(1), 1743053-82.

    PubMed  PubMed Central  Article  Google Scholar 

  56. 56.

    Li, W., Prabakaran, P., Chen, W., Zhu, Z., Feng, Y., & Dimitrov, D. S. (2016). Antibody aggregation: Insights from sequence and structure. Antibodies, 5(3), 19–42.

    PubMed Central  Article  CAS  Google Scholar 

  57. 57.

    van der Kant, R., Karow-Zwick, A. R., Durme, J., Blech, M., Gallardo, R., Seeliger, D., et al. (2017). Prediction and reduction of the aggregation of monoclonal antibodies. Journal of Molecular Biology, 429(8), 1244–61.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. 58.

    Bernardi, S., Marcuzzi, A., Piscianz, E., Tommasini, A., & Fabris, B. (2018). The complex interplay between lipids, immune system and interleukins in cardio-metabolic diseases. International Journal of Molecular Sciences., 19(12), 4058–82.

    PubMed Central  Article  Google Scholar 

  59. 59.

    Gaudet, D., Drouin-Chartier, J.-P., & Couture, P. (2017). Lipid metabolism and emerging targets for lipid-lowering therapy. Canadian Journal of Cardiology, 33(7), 872–82.

    Article  Google Scholar 

  60. 60.

    Bhatt, A., & Rohatgi, A. (2016). HDL Cholesterol efflux capacity: Cardiovascular risk factor and potential therapeutic target. Current Atherosclerosis Reports, 18(1), 2–10.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  61. 61.

    Mundi, S., Massaro, M., Scoditti, E., Carluccio, M. A., van Hinsbergh, V. W. M., Iruela-Arispe, M. L., et al. (2018). Endothelial permeability, LDL deposition, and cardiovascular risk factors - a review. Cardiovascular Research, 114(1), 35–52.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  62. 62.

    Zanoni, P., Velagapudi, S., Yalcinkaya, M., Rohrer, L., & von Eckardstein, A. (2018). Endocytosis of lipoproteins. Atherosclerosis., 275, 273–95.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  63. 63.

    Gao, S., & Liu, J. (2017). Association between circulating oxidized low-density lipoprotein and atherosclerotic cardiovascular disease. Chronic Diseases and Translational Medicine., 3(2), 89–94.

    PubMed  PubMed Central  Article  Google Scholar 

  64. 64.

    Di Pietro, N., Formoso, G., & Pandolfi, A. (2016). Physiology and pathophysiology of oxLDL uptake by vascular wall cells in atherosclerosis. Vascular Pharmacology, 84, 1–7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  65. 65.

    Kang, H., Lu, J., Yang, J., Fan, Y., & Deng, X. (2019). Interaction of arterial proteoglycans with low density lipoproteins (LDLs): From theory to promising therapeutic approaches. Medicine in Novel Technology and Devices., 3, 100016–24.

    Article  Google Scholar 

  66. 66.

    Frodermann, V., & Nahrendorf, M. (2018). Macrophages and cardiovascular health. Physiological Reviews, 98(4), 2523–69.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  67. 67.

    Fatkhullina, A. R., Peshkova, I. O., & Koltsova, E. K. (2016). The role of cytokines in the development of atherosclerosis. Biochemistry, 81(11), 1358–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Tall, A., & Yvan-Charvet, L. (2015). Cholesterol, inflammation and innate immunity. Nature Reviews Immunology., 15(2), 104–16.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  69. 69.

    Wolf, D., & Ley, K. (2019). Immunity and inflammation in atherosclerosis. Circulation Research, 124(2), 315–27.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  70. 70.

    Gencer, B., Laaksonen, R., Buhayer, A., & Mach, F. (2015). Use and role of monoclonal antibodies and other biologics in preventive cardiology. Swiss Medical Weekly., 145, w14179-86.

    PubMed  PubMed Central  Google Scholar 

  71. 71.

    Taylor, D. A. (2017). The use of biologics in the management of cardiovascular diseases. Current Opinion in Pharmacology., 33, 76–80.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  72. 72

    Lopes dos Santos, M., Quintilio, W., Manieri, T. M., Tsuruta, L. R., & Moro, A. M. (2018). Advances and challenges in therapeutic monoclonal antibodies drug development. Brazilian Journal of Pharmaceutical Sciences, 54, e01007–22.

    Google Scholar 

  73. 73.

    Köhler, G., & Milstein, C. (1975). Continuous cultures of fused cells secreting antibody of predefined specificity. Nature., 256(5517), 495–7.

    PubMed  Article  PubMed Central  Google Scholar 

  74. 74.

    Wen, J., & Yuan, K. (2021). Phage display technology, phage display system, antibody library, prospects and challenges. Advances in Applied Microbiology, 11(3), 181–9.

    Article  Google Scholar 

  75. 75.

    Frenzel, A., Kügler, J., Helmsing, S., Meier, D., Schirrmann, T., Hust, M., et al. (2017). Designing human antibodies by phage display. Transfusion Medicine and Hemotherapy, 44(5), 312–8.

    PubMed  PubMed Central  Article  Google Scholar 

  76. 76.

    Marvin, D. A., & Hoffmann-Berling, H. (1963). Physical and chemical properties of two new small bacteriophages. Nature, 197(4866), 517–8.

    CAS  Article  Google Scholar 

  77. 77.

    Moon, J.-S., Kim, W.-G., Kim, C., Park, G.-T., Heo, J., Yoo, S. Y., et al. (2015). M13 bacteriophage-based self-assembly structures and their functional capabilities. Mini-Reviews in Organic Chemistry., 12(3), 271–81.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  78. 78.

    Lim, C. C., Choong, Y. S., & Lim, T. S. (2019). Cognizance of molecular methods for the generation of mutagenic phage display antibody libraries for affinity maturation. International Journal of Molecular Sciences, 20(8), 1861–93.

    CAS  PubMed Central  Article  Google Scholar 

  79. 79.

    Tohidkia, M. R., Barar, J., Asadi, F., & Omidi, Y. (2012). Molecular considerations for development of phage antibody libraries. Journal of Drug Targeting., 20(3), 195–208.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  80. 80.

    Loh, B., Kuhn, A., & Leptihn, S. (2018). The fascinating biology behind phage display: Filamentous phage assembly. Molecular Microbiology, 111(5), 1132–8.

    Article  CAS  Google Scholar 

  81. 81.

    Viera, J., & Messing, J. (1987). Production of single-stranded plasmid DNA. Methods in Enzymology., 153, 3–11.

    Article  Google Scholar 

  82. 82.

    Bazan, J., Calkosinski, I., & Gamian, A. (2012). Phage display—A powerful technique for immunotherapy: 1. Introduction and potential of therapeutic applications. Human Vaccines & Immunotherapeutics. Human Vaccines & Immunotherapeutics, 8(12), 1817–28.

    CAS  Article  Google Scholar 

  83. 83.

    Brown, R., Lengeling, A., & Wang, B. (2017). Phage engineering: How advances in molecular biology and synthetic biology are being utilized to enhance the therapeutic potential of bacteriophages. Quantitative Biology., 5(1), 42–54.

    Article  Google Scholar 

  84. 84.

    Ellis, E. L., & Delbrück, M. (1939). The growth of bacteriophage. Journal of General Physiology, 22(3), 365–84.

    CAS  Article  Google Scholar 

  85. 85.

    Lowman, H. B., & Wells, J. A. (1991). Monovalent phage display: A method for selecting variant proteins from random libraries. Methods, 3(3), 205–16.

    CAS  Article  Google Scholar 

  86. 86.

    Rondot, S., Koch, J., Breitling, F., & Dübel, S. (2001). A helper phage to improve single-chain antibody presentation in phage display. Nature Biotechnology, 19(1), 75–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  87. 87.

    Reader, R. H., Workman, R. G, Maddison, B. C., & Gough, K. C. (2019). Advances in the production and batch reformatting of phage antibody libraries. Molecular Biotechnology, 61(11), 801–15.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  88. 88

    Bates, A., & Power, C. A. (2019). David vs. Goliath: The structure, function, and clinical prospects of antibody fragments. Antibodies, 8(2), 28–59.

    CAS  PubMed Central  Article  Google Scholar 

  89. 89.

    Gupta, S. K., & Shukla, P. (2016). Microbial platform technology for recombinant antibody fragment production: A review. Critical Reviews in Microbiology, 43(1), 31–42.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  90. 90.

    Yu, X., Yang, Y. P., Dikici, E., Deo, S. K., & Daunert, S. (2017). Beyond antibodies as binding partners: The role of antibody mimetics in bioanalysis. Annual Review of Analytical Chemistry, 10(1), 293–320.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  91. 91.

    Gebauer, M., & Skerra, A. (2020). Engineered protein scaffolds as next-generation therapeutics. Annual Review of Pharmacology and Toxicology, 60, 391–415.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  92. 92.

    Ta, A. N., & McNaughton, B. R. (2017). Antibody and antibody mimetic immunotherapeutics. Future Medicinal Chemistry., 9(12), 1301–4.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  93. 93.

    Koutsoumpeli, E., Tiede, C., Murray, J., Tang, A., Bon, R. S., Tomlinson, D. C., et al. (2017). Antibody mimetics for the detection of small organic compounds using a quartz crystal microbalance. Analytical Chemistry., 89(5), 3051–58.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  94. 94.

    Jacobsen, F. W., Stevenson, R., Li, C., Salimi-Moosavi, H., Liu, L., Wen, J., et al. (2017). Engineering an IgG scaffold lacking effector function with optimized developability. Journal of Biological Chemistry., 292(5), 1865–75.

    CAS  Article  Google Scholar 

  95. 95.

    Almagro, J. C., Pedraza, M., Arrieta, H. I., & Pérez-Tapia, S. M. (2019). Phage display libraries for antibody therapeutic discovery and development. Antibodies, 8(3), 44–65.

    CAS  PubMed Central  Article  Google Scholar 

  96. 96.

    Hoogenboom, H. R. (2005). Selecting and screening recombinant antibody libraries. Nature Biotechnology., 23(9), 1105–16.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  97. 97.

    Burkovitz, A., & Ofran, Y. (2015). Understanding differences between synthetic and natural antibodies can help improve antibody engineering. mAbs, 8, 278–87.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  98. 98.

    Lai, J. Y., & Lim, T. S. (2020). Infectious disease antibodies for biomedical applications: A mini review of immune antibody phage library repertoire. International Journal of Biological Macromolecules, 163, 640–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  99. 99.

    Lim, T. S., & Chan, S. K. (2016). Immune antibody libraries: Manipulating the diverse immune repertoire for antibody discovery. Current Pharmaceutical Design, 22(43), 6480–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. 100.

    Butler, J. E., Ni, L., Nessler, R., Joshi, K. S., Suter, M., Rosenberg, B., et al. (1992). The physical and functional behavior of capture antibodies adsorbed on polystyrene. Journal of Immunological Methods, 150(1-2), 77–90.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  101. 101.

    Takakusagi, Y., Takakusagi, K., Sakaguchi, K., & Sugawara, F. (2020). Phage display technology for target determination of small-molecule therapeutics: An update. Expert Opinion on Drug Discovery, 15(10), 1199–211.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  102. 102.

    Barbas, C. F. 3rd., Kang, A., Lerner, R., & Benkovic, S. J. (1991). Assembly of combinatorial antibody libraries on phage surfaces: The gene III site. Proceedings of the National Academy of Sciences of The United States of America, 88(18), 7978–82.

  103. 103.

    Murai, R., Nogi, T., Tateoka, K., & Sato, A. (2015). Affinity selection of peptide binders with magnetic beads via organic phase separation (MOPS). Biological and Pharmaceutical Bulletin, 38(11), 1822–6.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  104. 104.

    Hawlisch, H., Müller, M., Frank, R., Bautsch, W., Klos, A., & Köhl, J. (2001). Site-specific anti-C3a receptor single-chain antibodies selected by differential panning on cellulose sheets. Analytical Biochemistry, 293(1), 142–5.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  105. 105.

    Larsen, S. A., Meldgaard, T., Lykkemark, S., Mandrup, O. A., & Kristensen, P. (2015). Selection of cell-type specific antibodies on tissue-sections using phage display. Journal of Cellular and Molecular Medicine, 19(8), 1939–48.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  106. 106.

    Jones, M., Alfaleh, M. A., Kumble, S., Zhang, S., Osborne, G. W., Yeh, M., et al. (2016). Targeting membrane proteins for antibody discovery using phage display. Scientific Reports, 6(1), 26240–51.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  107. 107.

    Soleimani Zadeh, A., Grässer, A., Dinter, H., Hermes, M., & Schindowski, K. (2019). Efficient construction and effective screening of synthetic domain antibody libraries. Methods and Protocols, 2(1), 17–36.

    Article  CAS  Google Scholar 

  108. 108.

    Barderas, R., & Benito-Peña, E. (2019). The 2018 Nobel Prize in Chemistry: Phage display of peptides and antibodies. Analytical and Bioanalytical Chemistry., 411(12), 2475–79.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  109. 109.

    Kenna, J. G., Major, G. N., & Williams, R. S. (1985). Methods for reducing non-specific antibody binding in enzyme-linked immunosorbent assays. Journal of Immunological Methods, 85(2), 409–19.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  110. 110.

    Kiguchi, Y., Oyama, H., Morita, I., Morikawa, M., Nakano, A., Fujihara, W., et al. (2020). Clonal array profiling of scFv-displaying phages for high-throughput discovery of affinity-matured antibody mutants. Scientific Reports, 10(1), 14103–17.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  111. 111.

    Yang, W., Yoon, A., Lee, S., Kim, S., Han, J., & Chung, J. (2017). Next-generation sequencing enables the discovery of more diverse positive clones from a phage-displayed antibody library. Experimental & Molecular Medicine, 49(3), e308–17.

    CAS  Article  Google Scholar 

  112. 112.

    Ridker, P. M., Everett, B. M., Thuren, T., MacFadyen, J. G., Chang, W. H., Ballantyne, C., et al. (2017). Antiinflammatory therapy with canakinumab for atherosclerotic disease. New England Journal of Medicine, 377(12), 1119–31.

    Article  Google Scholar 

  113. 113.

    Weber, C., & Hundelshausen, P. (2017). CANTOS trial validates the inflammatory pathogenesis of atherosclerosis: Setting the stage for a new chapter in therapeutic targeting. Circulation Research, 121(10), 1119–21.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  114. 114.

    Abdullah, S. M., Defina, L. F., Leonard, D., Barlow, C. E., Radford, N. B., Willis, B., et al. (2018). Long-term association of low-density lipoprotein cholesterol with cardiovascular mortality in individuals at low 10-year risk of atherosclerotic cardiovascular disease. Circulation, 138(21), 2315–25.

    Article  CAS  Google Scholar 

  115. 115.

    Ference, B., Ginsberg, H., Graham, I., Ray, K., Packard, C., Bruckert, E., et al. (2017). Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. European Heart Journal, 38(32), 2459–72.

    Article  CAS  Google Scholar 

  116. 116.

    Brown, M. S., & Goldstein, J. L. (1986). A receptor-mediated pathway for cholesterol homeostasis. Science., 232(4746), 34–47.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  117. 117.

    Tybjærg-Hansen, A., & Humphries, S. E.  (1992). Familial defective apolipoprotein B-100: A single mutation that causes hypercholesterolemia and premature coronary artery disease. Atherosclerosis, 96(2-3), 91–107.

    Article  Google Scholar 

  118. 118.

    Hobbs, H. H., Brown, M. S., & Goldstein, J. L. (1992). Molecular genetics of the LDL receptor gene in Familial Hypercholesterolemia. Human Mutation, 1(6), 445–66.

    Article  Google Scholar 

  119. 119.

    Kaya, E., Kayikcioglu, M., Tetik Vardarlı, A., Eroğlu, Z., Payzın, S., & Can, L. (2017). PCSK 9 gain-of-function mutations (R496W and D374Y) and clinical cardiovascular characteristics in a cohort of Turkish patients with familial hypercholesterolemia. The Anatolian Journal of Cardiology, 18(4), 266–72.

    Google Scholar 

  120. 120.

    Bayona, A., Arrieta, F., Rodríguez Jiménez, C., Cerrato, F., Rodriguez Novoa, S., Fernández-Lucas, M., et al. (2020). Loss-of-function mutation of PCSK9 as a protective factor in the clinical expression of familial hypercholesterolemia: A case report. Medicine, 99(34), e21754–8.

    Article  Google Scholar 

  121. 121.

    Piper, D. E., Jackson, S., Liu, Q., Romanow, W. G., Shetterly, S., Thibault, S. T., et al. (2007). The crystal structure of PCSK9: A regulator of plasma LDL-cholesterol. Structure, 15(5), 545–52.

    Article  CAS  Google Scholar 

  122. 122.

    Seidah, N., Benjannet, S., Wickham, L., Marcinkiewicz, J., Jasmin, S., Stifani, S., et al. (2003). The secretory proprotein convertase neural apoptosis-regulated convertase 1 (NARC-1): Liver regeneration and neuronal differentiation. Proceedings of the National Academy of Sciences of the United States of America, 100(3), 928–33.

    Article  CAS  Google Scholar 

  123. 123.

    Zhang, D. W., Lagace, T. A., Garuti, R., Zhao, Z., McDonald, M., Horton, J. D., et al. (2007). Binding of proprotein convertase subtilisin/kexin type 9 to epidermal growth factor-like repeat a of low density lipoprotein receptor decreases receptor recycling and increases degradation. Journal of Biological Chemistry, 282(25), 18602–12.

    Article  Google Scholar 

  124. 124.

    Rudenko, G., Henry, L., Henderson, K., Ichtchenko, K., Brown, M. S., Goldstein, J. L., et al. (2002). Structure of the LDL receptor extracellular domain at endosomal pH. Science., 298(5602), 2353–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  125. 125.

    Brown, M. S., Anderson, R. G., & Goldstein, J. L. (1983). Recycling receptors: The round-trip itinerary of migrant membrane proteins. Cell, 32(3), 663–7.

    Article  Google Scholar 

  126. 126.

    Wiciński, M., Żak, J., Malinowski, B., Popek, G., & Grześk, G. (2017). PCSK9 signaling pathways and their potential importance in clinical practice. EPMA Journal., 8(4), 391–402.

    Article  Google Scholar 

  127. 127.

    Moradi, A., Maleki, M., Ghaemmaghami, Z., Khajali, Z., Noohi, F., Moghadam, M. H., et al. (2021). Mutational spectrum of LDLR and PCSK9 genes identified in Iranian patients with premature coronary artery disease and familial hypercholesterolemia. Frontiers in Genetics, 12, 625959–71.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  128. 128.

    Schulz, R., & Schlüter, K.-D. (2017). PCSK9 targets important for lipid metabolism. Clinical Research in Cardiology Supplements., 12, 2–11.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  129. 129.

    Xu, M., Lei, G., Chen, M., Wang, K., Lv, W., Zhang, P., et al. (2021). Development of a novel, fully human, anti-PCSK9 antibody with potent hypolipidemic activity by utilizing phage display-based strategy. EBioMedicine., 65, 103250–65.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  130. 130.

    Meah, F., Basit, A., Mazhari, A., Emanuele, M. A., & Emanuele, N. (2016). New lipid therapies: PCSK9 inhibitors. Journal of Clinical and Translational Endocrinology: Case Reports, 2, 23–6.

    Google Scholar 

  131. 131.

    Lu, R.-M., Hwang, Y.-C., Liu, I. J., Lee, C.-C., Tsai, H.-Z., Li, H.-J., et al. (2020). Development of therapeutic antibodies for the treatment of diseases. Journal of Biomedical Science, 27(1), 1–30.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  132. 132.

    Kereiakes, D. J., Robinson, J. G., Cannon, C. P., Lorenzato, C., Pordy, R., Chaudhari, U., et al. (2015). Efficacy and safety of the proprotein convertase subtilisin/kexin type 9 inhibitor alirocumab among high cardiovascular risk patients on maximally tolerated statin therapy: The ODYSSEY COMBO I study. American Heart Journal, 169(6), 906–15.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  133. 133.

    Cannon, C. P., Cariou, B., Blom, D., McKenney, J. M., Lorenzato, C., Pordy, R., et al. (2015). Efficacy and safety of alirocumab in high cardiovascular risk patients with inadequately controlled hypercholesterolaemia on maximally tolerated doses of statins: The ODYSSEY COMBO II randomized controlled trial. European Heart Journal, 36(19), 1186–94.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  134. 134.

    Descamps, O. S., Fraass, U., Dent, R., März, W., & Gouni-Berthold, I. (2017). Anti-PCSK9 antibodies for hypercholesterolaemia: Overview of clinical data and implications for primary care. International Journal of Clinical Practice, 71(8), e12979–95.

    PubMed Central  Article  CAS  Google Scholar 

  135. 135.

    Dixon, D. L., Pamulapati, L. G., Bucheit, J. D., Sisson, E. M., Smith, S. R., Kim, C. J., et al. (2019). Recent updates on the use of PCSK9 inhibitors in patients with atherosclerotic cardiovascular disease. Current Atherosclerosis Reports, 21(5), 16–25.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  136. 136.

    Chan, J. C, Piper, D. E., Cao, Q., Liu, D., King, C., Wang, W., et al. (2009). A proprotein convertase subtilisin/kexin type 9 neutralizing antibody reduces serum cholesterol in mice and nonhuman primates. Proceedings of the National Academy of Sciences of the United States of America, 106(24), 9820–5.

    CAS  Article  Google Scholar 

  137. 137.

    Pouwer, M. G., Pieterman, E. J., Worms, N., Keijzer, N., Jukema, J., Gromada, J., et al. (2020). Alirocumab, evinacumab, and atorvastatin triple therapy regresses plaque lesions and improves lesion composition in mice. Journal of Lipid Research, 61(3), 365–75.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  138. 138.

    Stroes, E., Colquhoun, D., Sullivan, D., Civeira, F., Rosenson, R. S., Watts, G. F., et al. (2014). Anti-PCSK9 antibody effectively lowers cholesterol in patients with statin intolerance: The GAUSS-2 randomized, placebo-controlled phase 3 clinical trial of evolocumab. Journal of the American College of Cardiology, 63(23), 2541–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  139. 139.

    Qian, L. J., Gao, Y., Zhang, Y. M., Chu, M., Yao, J., & Xu, D. (2017). Therapeutic efficacy and safety of PCSK9-monoclonal antibodies on familial hypercholesterolemia and statin-intolerant patients: A meta-analysis of 15 randomized controlled trials. Scientific Reports, 7, 238–49.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  140. 140.

    Raal, F. J., Stein, E. A., Dufour, R., Turner, T., Civeira, F., Burgess, L., et al. (2015). PCSK9 inhibition with evolocumab (AMG 145) in heterozygous familial hypercholesterolaemia (RUTHERFORD-2): A randomised, double-blind, placebo-controlled trial. Lancet., 385(9965), 331–40.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  141. 141.

    Raal, F. J., Honarpour, N., Blom, D. J., Hovingh, G. K., Xu, F., Scott, R., et al. (2015). Inhibition of PCSK9 with evolocumab in homozygous familial hypercholesterolaemia (TESLA Part B): A randomised, double-blind, placebo-controlled trial. Lancet., 385(9965), 341–50.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  142. 142.

    Cao, Y., Yang, H., Zhou, X., Mao, H., Gao, T., Hu, Z., et al. (2015). Selection and characterization of human PCSK9 antibody from phage displayed antibody library. Biochemical and Biophysical Research Communications, 463(4), 712–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  143. 143.

    Weider, E., Susan-Resiga, D., Essalmani, R., Hamelin, J., Asselin, M.-C., Nimesh, S., et al. (2016). Proprotein convertase subtilisin/kexin type 9 (PCSK9) single domain antibodies are potent inhibitors of low density lipoprotein receptor degradation. Journal of Biological Chemistry, 291(32), 16659–71.

    CAS  Article  Google Scholar 

  144. 144.

    Lee, J. S., Chang, P.-Y., Zhang, Y., Kizer, J., Best, L. G., & Howard, B. V. (2017). Triglyceride and HDL-C dyslipidemia and risks of coronary heart disease and ischemic stroke by glycemic dysregulation status: The strong heart study. Diabetes Care, 40(4), 529–37.

    PubMed  PubMed Central  Article  Google Scholar 

  145. 145.

    Morelli, M. B., Chavez, C., & Santulli, G. (2020). Angiopoietin-like proteins as therapeutic targets for cardiovascular disease: Focus on lipid disorders. Expert Opinion on Therapeutic Targets., 24(1), 79–88.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  146. 146.

    Dewey, F. E., Gusarova, V., Dunbar, R. L., O’Dushlaine, C., Schurmann, C., Gottesman, O., et al. (2017). Genetic and pharmacologic inactivation of ANGPTL3 and cardiovascular disease. New England Journal of Medicine., 377(3), 211–21.

    CAS  Article  Google Scholar 

  147. 147.

    Pisciotta, L., Favari, E., Magnolo, L., Simonelli, S., Adorni, M. P., Sallo, R., et al. (2012). Characterization of three kindreds with familial combined hypolipidemia caused by loss-of-function mutations of ANGPTL3. Circulation: Cardiovascular Genetics., 5(1), 42–50.

    CAS  Google Scholar 

  148. 148.

    Dewey, F. E., Gusarova, V., O’Dushlaine, C., Gottesman, O., Trejos, J., Hunt, C., et al. (2016). Inactivating variants in ANGPTL4 and risk of coronary artery disease. New England Journal of Medicine., 374(12), 1123–33.

    CAS  Article  Google Scholar 

  149. 149.

    Romeo, S., Pennacchio, L. A., Fu, Y., Boerwinkle, E., Tybjaerg-Hansen, A., Hobbs, H. H., et al. (2007). Population-based resequencing of ANGPTL4 uncovers variations that reduce triglycerides and increase HDL. Nature Genetics., 39(4), 513–6.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  150. 150.

    Stitziel, N. O., Stirrups, K. E., Masca, N. G., Erdmann, J., Ferrario, P. G., König, I. R., et al. (2016). Coding variation in ANGPTL4, LPL, and SVEP1 and the risk of coronary disease. New England Journal of Medicine, 374(12), 1134–44.

    CAS  Article  Google Scholar 

  151. 151.

    Peloso, G. M., Auer, P. L., Bis, J. C., Voorman, A., Morrison, A. C., Stitziel, N. O., et al. (2014). Association of low-frequency and rare coding-sequence variants with blood lipids and coronary heart disease in 56,000 whites and blacks. American Journal of Human Genetics., 94(2), 223–32.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  152. 152.

    Conklin, D., Gilbertson, D., Taft, D. W., Maurer, M. F., Whitmore, T. E., Smith, D. L., et al. (1999). Identification of a mammalian angiopoietin-related protein expressed specifically in liver. Genomics., 62(3), 477–82.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  153. 153.

    Kaplan, R., Zhang, T., Hernandez, M., Gan, F. X., Wright, S. D., Waters, M. G., et al. (2003). Regulation of the angiopoietin-like protein 3 gene by LXR. Journal of Lipid Research., 44(1), 136–43.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  154. 154.

    Nidhina Haridas, P. A., Soronen, J., Sädevirta, S., Mysore, R., Quagliarini, F., Pasternack, A., et al. (2015). Regulation of angiopoietin-like proteins (ANGPTLs) 3 and 8 by insulin. Journal of Clinical Endocrinology and Metabolism, 100(10), E1299–307.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  155. 155.

    Lee, E.-C., Desai, U., Gololobov, G., Hong, S., Feng, X., Yu, X.-C., et al. (2009). Identification of a new functional domain in angiopoietin-like 3 (ANGPTL3) and angiopoietin-like 4 (ANGPTL4) involved in binding and inhibition of lipoprotein lipase (LPL). Journal of Biological Chemistry., 284(20), 13735–45.

    CAS  Article  Google Scholar 

  156. 156.

    Musunuru, K., Pirruccello, J. P., Do, R., Peloso, G. M., Guiducci, C., Sougnez, C., et al. (2010). Exome sequencing, ANGPTL3 mutations, and familial combined hypolipidemia. New England Journal of Medicine., 363(23), 2220–7.

    CAS  Article  Google Scholar 

  157. 157.

    Adam, R. C., Mintah, I. J., Alexa-Braun, C. A., Shihanian, L. M., Lee, J. S., Banerjee, P., et al. (2020). Angiopoietin-like protein 3 governs LDL-cholesterol levels through endothelial lipase-dependent VLDL clearance. Journal of Lipid Research., 61(9), 1271–86.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  158. 158.

    Wu, L., Soundarapandian, M. M., Castoreno, A. B., Millar, J. S., & Rader, D. J. (2020). LDL-cholesterol reduction by ANGPTL3 inhibition in mice is dependent on endothelial lipase. Circulation Research., 127(8), 1112–4.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  159. 159.

    Kim, I., Kim, H.-G., Kim, H., Kim, H.-H., Park, S. K., Uhm, C.-S., et al. (2000). Hepatic expression, synthesis and secretion of a novel fibrinogen/angiopoietin-related protein that prevents endothelial-cell apoptosis. Biochemical Journal, 346(3), 603–10.

    CAS  PubMed Central  Article  Google Scholar 

  160. 160.

    Yoon, J. C., Chickering, T. W., Rosen, E. D., Dussault, B., Qin, Y., Soukas, A., et al. (2000). Peroxisome proliferator-activated receptor γ target gene encoding a novel angiopoietin-related protein associated with adipose differentiation. Molecular and Cell Biology., 20(14), 5343–9.

    CAS  Article  Google Scholar 

  161. 161.

    Kersten, S., Mandard, S., Tan, N. S., Escher, P., Metzger, D., Chambon, P., et al. (2000). Characterization of the fasting-induced adipose factor FIAF, a novel peroxisome proliferator-activated receptor target gene. Journal of Biological Chemistry., 275(37), 28488–93.

    CAS  Article  Google Scholar 

  162. 162.

    Kaddatz, K., Adhikary, T., Finkernagel, F., Meissner, W., Müller-Brüsselbach, S., & Müller, R. (2010). Transcriptional profiling identifies functional interactions of TGFβ and PPARβ/δ signaling: Synergistic induction of ANGPTL4 transcription. Journal of Biological Chemistry., 285(38), 29469–79.

    CAS  Article  Google Scholar 

  163. 163

    Koliwad, S. K., Kuo, T., Shipp, L. E., Gray, N. E., Backhed, F., So, A.Y.-L., et al. (2009). Angiopoietin-like 4 (ANGPTL4, fasting-induced adipose factor) is a direct glucocorticoid receptor target and participates in glucocorticoid-regulated triglyceride metabolism. Journal of Biological Chemistry, 284(38), 25593–601.

    CAS  Article  Google Scholar 

  164. 164.

    Lei, X., Shi, F., Basu, D., Huq, A., Routhier, S., Day, R., et al. (2011). Proteolytic processing of angiopoietin-like protein 4 by proprotein convertases modulates its inhibitory effects on lipoprotein lipase activity. Journal of Biological Chemistry., 286(18), 15747–56.

    CAS  Article  Google Scholar 

  165. 165.

    Liu, J., Afroza, H., Rader, D. J., & Jin, W. (2010). Angiopoietin-like protein 3 inhibits lipoprotein lipase activity through enhancing its cleavage by proprotein convertases. Journal of Biological Chemistry., 285(36), 27561–70.

    CAS  Article  Google Scholar 

  166. 166.

    Kersten, S. (2014). Physiological regulation of lipoprotein lipase. Biochemical and Biophysical Acta., 1841(7), 919–33.

    CAS  Article  Google Scholar 

  167. 167.

    Grootaert, C., Van de Wiele, T., Verstraete, W., Bracke, M., & Vanhoecke, B. (2012). Angiopoietin-like protein 4: Health effects, modulating agents and structure–function relationships. Expert Review of Proteomics, 9(2), 181–99.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  168. 168.

    Zhang, R. (2012). Lipasin, a novel nutritionally-regulated liver-enriched factor that regulates serum triglyceride levels. Biochemical and Biophysical Research Communications., 424(4), 786–92.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  169. 169.

    Ren, G., Kim, J. Y., & Smas, C. M. (2012). Identification of RIFL, a novel adipocyte-enriched insulin target gene with a role in lipid metabolism. American Journal of Physiology - Endocrinology and Metabolism., 303(3), E334-51.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  170. 170.

    Lee, J., Hong, S.-W., Park, S. E., Rhee, E.-J., Park, C.-Y., Oh, K.-W., et al. (2015). AMP-activated protein kinase suppresses the expression of LXR/SREBP-1 signaling-induced ANGPTL8 in HepG2 cells. Molecular and Cellular Endocrinology, 414, 148–55.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  171. 171.

    Quagliarini, F., Wang, Y., Kozlitina, J., Grishin, N. V., Hyde, R., Boerwinkle, E., et al. (2012). Atypical angiopoietin-like protein that regulates ANGPTL3. Proceedings of the National Academy of Sciences of the United States of America, 109(48), 19751–56.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  172. 172.

    Chi, X., Britt, E. C., Shows, H. W., Hjelmaas, A. J., Shetty, S. K., Cushing, E. M., et al. (2017). ANGPTL8 promotes the ability of ANGPTL3 to bind and inhibit lipoprotein lipase. Molecular Metabolism., 6(10), 1137–49.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  173. 173.

    Haller, J. F., Mintah, I. J., Shihanian, L. M., Stevis, P., Buckler, D., Alexa-Braun, C. A., et al. (2017). ANGPTL8 requires ANGPTL3 to inhibit lipoprotein lipase and plasma triglyceride clearance. Journal of Lipid Research., 58(6), 1166–73.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  174. 174.

    Kovrov, O., Kristensen, K. K., Larsson, E., Ploug, M., & Olivecrona, G. (2019). On the mechanism of angiopoietin-like protein 8 for control of lipoprotein lipase activity. Journal of Lipid Research, 60(4), 783–93.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  175. 175.

    Wang, Y., McNutt, M. C., Banfi, S., Levin, M. G., Holland, W. L., Gusarova, V., et al. (2015). Hepatic ANGPTL3 regulates adipose tissue energy homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 112(37), 11630–35.

  176. 176.

    Dijk, W., & Kersten, S. (2016). Regulation of lipid metabolism by angiopoietin-like proteins. Current Opinion in Lipidology., 27(3), 249–56.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  177. 177.

    Kersten, S., Lichtenstein, L., Steenbergen, E., Mudde, K., Hendriks, H. F., Hesselink, M. K., et al. (2009). Caloric restriction and exercise increase plasma ANGPTL4 levels in humans via elevated free fatty acids. Arteriosclerosis, Thrombosis, and Vascular Biology., 29(6), 969–74.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  178. 178.

    Ahmad, Z., Banerjee, P., Hamon, S., Chan, K.-C., Bouzelmat, A., Sasiela, W. J., et al. (2019). Inhibition of angiopoietin-like protein 3 with a monoclonal antibody reduces triglycerides in hypertriglyceridemia. Circulation., 140(6), 470–86.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  179. 179.

    Lichtenstein, L., Mattijssen, F., de Wit, N. J., Georgiadi, A., Hooiveld, G. J., van der Meer, R., et al. (2010). Angptl4 protects against severe proinflammatory effects of saturated fat by inhibiting fatty acid uptake into mesenteric lymph node macrophages. Cell Metabolism., 12(6), 580–92.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  180. 180.

    Gusarova, V., Banfi, S., Alexa-Braun, C. A., Shihanian, L. M., Mintah, I. J., Lee, J. S., et al. (2017). ANGPTL8 blockade with a monoclonal antibody promotes triglyceride clearance, energy expenditure, and weight loss in mice. Endocrinology., 158(5), 1252–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  181. 181.

    Fu, Z., Berhane, F., Fite, A., Seyoum, B., Abou-Samra, A. B., & Zhang, R. (2014). Elevated circulating lipasin/betatrophin in human type 2 diabetes and obesity. Scientific Reports, 4(1), 5013–18.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  182. 182.

    Guo, X. R., Wang, X. L., Chen, Y., Yuan, Y. H., Chen, Y. M., Ding, Y., et al. (2016). ANGPTL8/betatrophin alleviates insulin resistance via the Akt-GSK3β or Akt-FoxO1 pathway in HepG2 cells. Experimental Cell Research., 345(2), 158–67.

    Article  CAS  Google Scholar 

  183. 183.

    Romeo, S., Yin, W., Kozlitina, J., Pennacchio, L. A., Boerwinkle, E., Hobbs, H. H., et al. (2009). Rare loss-of-function mutations in ANGPTL family members contribute to plasma triglyceride levels in humans. Journal of Clinical Investigation, 119(1), 70–9.

    CAS  Google Scholar 

  184. 184.

    Gangabadage, C. S., Zdunek, J., Tessari, M., Nilsson, S., Olivecrona, G., & Wijmenga, S. S. (2008). Structure and dynamics of human apolipoprotein CIII. Journal of Biological Chemistry., 283(25), 17416–27.

    CAS  Article  Google Scholar 

  185. 185.

    Borén, J., Packard, C. J., & Taskinen, M.-R. (2020). The roles of ApoC-III on the metabolism of triglyceride-rich lipoproteins in humans. Frontiers in Endocrinology., 11, 474–84.

    PubMed  PubMed Central  Article  Google Scholar 

  186. 186.

    Tachmazidou, I., Dedoussis, G., Southam, L., Farmaki, A.-E., Ritchie, G. R., Xifara, D. K., et al. (2013). A rare functional cardioprotective APOC3 variant has risen in frequency in distinct population isolates. Nature Communications, 4, 2872.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  187. 187.

    Goumans, M.-J., Zwijsen, A., Ten Dijke, P., & Bailly, S. (2018). Bone morphogenetic proteins in vascular homeostasis and disease. Cold Spring Harbor Perspectives in Biology, 10(2), a031989–2022.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  188. 188.

    Scharpfenecker, M., van Dinther, M., Liu, Z., van Bezooijen, R. L., Zhao, Q., Pukac, L., et al. (2007). BMP-9 signals via ALK1 and inhibits bFGF-induced endothelial cell proliferation and VEGF-stimulated angiogenesis. Journal of Cell Science., 120(6), 964–72.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  189. 189.

    González-Núñez, M., Muñoz-Félix, J. M., & López-Novoa, J. M. (2013). The ALK-1/Smad1 pathway in cardiovascular physiopathology A new target for therapy? Biochimica et Biophysica Acta, 1832(10), 1492–510.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  190. 190.

    Tao, B., Kraehling, J. R., Ghaffari, S., Ramirez, C. M., Lee, S., Fowler, J. W., et al. (2020). BMP-9 and LDL crosstalk regulates ALK-1 endocytosis and LDL transcytosis in endothelial cells. Journal of Biological Chemistry., 295(52), 18179–88.

    CAS  Article  Google Scholar 

  191. 191.

    Kraehling, J. R., Chidlow, J. H., Rajagopal, C., Sugiyama, M. G., Fowler, J. W., Lee, M. Y., et al. (2016). Genome-wide RNAi screen reveals ALK1 mediates LDL uptake and transcytosis in endothelial cells. Nature Communications, 7, 13516.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  192. 192.

    Bergheanu, S., Bodde, M., & Jukema, J. (2017). Pathophysiology and treatment of atherosclerosis: Current view and future perspective on lipoprotein modification treatment. Netherlands Heart Journal, 25(4), 231–42.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  193. 193.

    Sinning, D., & Landmesser, U. (2020). Low-density lipoprotein-cholesterol lowering strategies for prevention of atherosclerotic cardiovascular disease: Focus on siRNA treatment targeting PCSK9 (Inclisiran). Current Cardiology Reports., 22, 176–83.

    PubMed  PubMed Central  Article  Google Scholar 

  194. 194.

    Plakkal Ayyappan, J., Paul, A., & Goo, Y.-H. (2016). Lipid droplet-associated proteins in atherosclerosis (Review). Molecular Medicine Reports, 13(6), 4527–34.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  195. 195.

    Xu, S., Zhang, X., & Liu, P. (2018). Lipid droplet proteins and metabolic diseases. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1864(5 PtB), 1968–83.

    CAS  Article  Google Scholar 

  196. 196.

    Greenberg, A. S., Egan, J. J., Wek, S. A., Garty, N. B., Blanchette-Mackie, E. J., & Londos, C. (1991). Perilipin, a major hormonally regulated adipocyte-specific phosphoprotein associated with the periphery of lipid storage droplets. Journal of Biological Chemistry, 266(17), 11341–6.

    CAS  Article  Google Scholar 

  197. 197.

    Kimmel, A. R., & Sztalryd, C. (2016). The perilipins: Major cytosolic lipid droplet–associated proteins and their roles in cellular lipid storage, mobilization, and systemic homeostasis. Annual Review of Nutrition, 36, 471–509.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  198. 198.

    Heid, H. W., Moll, R., Schwetlick, I., Rackwitz, H.-R., & Keenan, T. W. (1998). Adipophilin is a specific marker of lipid accumulation in diverse cell types and diseases. Cell and Tissue Research, 294(2), 309–21.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  199. 199.

    Brasaemle, D. L., Barber, T., Wolins, N. E., Serrero, G., Blanchette-Mackie, E. J., & Londos, C. J. (1997). Adipose differentiation-related protein is a ubiquitously expressed lipid storage droplet-associated protein. Journal of Lipid Research, 38(11), 2249–63.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  200. 200.

    Saliba Gustafsson, P., Pedrelli, M., Werngren, O., Parini, P., & Ehrenborg, E. (2018). The lipid-droplet associated protein perilipin 2 (PLIN2) plays a central role in lipid accumulation and cholesterol efflux via effects on LXR signaling in human macrophages. Atherosclerosis., 275, E32.

    Article  Google Scholar 

  201. 201.

    Takahashi, Y., Shinoda, A., Kamada, H., Shimizu, M., Inoue, J., & Sato, R. (2016). Perilipin2 plays a positive role in adipocytes during lipolysis by escaping proteasomal degradation. Scientific Reports, 6, 20975.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  202. 202.

    Larigauderie, G., Cuaz-Pérolin, C., Younes, A. B., Furman, C., Lasselin, C., Copin, C., et al. (2006). Adipophilin increases triglyceride storage in human macrophages by stimulation of biosynthesis and inhibition of β-oxidation. FEBS Journal, 273(15), 3498–510.

    CAS  Article  Google Scholar 

  203. 203.

    Harris, C. A., Haas, J. T., Streeper, R. S., Stone, S. J., Kumari, M., Yang, K., et al. (2011). DGAT enzymes are required for triacylglycerol synthesis and lipid droplets in adipocytes. Journal of Lipid Research, 52(4), 657–67.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  204. 204.

    Sukhorukov, V. N., Khotina, V. A., Chegodaev, Y. S., Ivanova, E., Sobenin, I. A., & Orekhov, A. N. (2020). Lipid metabolism in nacrophages: Focus on atherosclerosis. Biomedicines, 8(8), 262–77.

    CAS  PubMed Central  Article  Google Scholar 

  205. 205.

    Wilfling, F., Wang, H., Haas, J. T., Krahmer, N., Gould, T. J., Uchida, A., et al. (2013). Triacylglycerol synthesis enzymes mediate lipid droplet growth by relocalizing from the ER to lipid droplets. Developmental Cell, 24(4), 384–99.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  206. 206.

    Saliba-Gustafsson, P., Pedrelli, M., Gertow, K., Werngren, O., Janas, V., Pourteymour, S., et al. (2019). Subclinical atherosclerosis and its progression are modulated by PLIN2 through a feed-forward loop between LXR and autophagy. Journal of Internal Medicine, 286(6), 660–675.

  207. 207.

    Son, S.-H., Goo, Y.-H., Chang, B. H., & Paul, A. (2012). Perilipin 2 (PLIN2)-deficiency does not increase cholesterol-induced toxicity in macrophages. PloS ONE., 7(3), e33063-71.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  208. 208.

    Mardani, I., Tomas Dalen, K., Drevinge, C., Miljanovic, A., Ståhlman, M., Klevstig, M., et al. (2019). Plin2-deficiency reduces lipophagy and results in increased lipid accumulation in the heart. Scientific Reports, 9, 6909.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  209. 209.

    Li, Y., Khanal, P., Norheim, F., Hjorth, M., Bjellaas, T., Drevon, C. A., et al. (2021). Plin2 deletion increases cholesteryl ester lipid droplet content and disturbs cholesterol balance in adrenal cortex. Journal of Lipid Research, 62, 100048–67.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  210. 210.

    Sztalryd, C., & Brasaemle, D. L. (2017). The perilipin family of lipid droplet proteins: Gatekeepers of intracellular lipolysis. Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids, 1862(10 Pt B), 1221–32.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  211. 211.

    Kaushik, S., & Cuervo, A. M. (2015). Degradation of lipid droplet-associated proteins by chaperone-mediated autophagy facilitates lipolysis. Nature Cell Biology, 17(6), 759–70.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  212. 212.

    Itabe, H., Yamaguchi, T., Nimura, S., & Sasabe, N. (2017). Perilipins: A diversity of intracellular lipid droplet proteins. Lipids in Health and Disease, 16(1), 83–94.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  213. 213.

    Ben-Avram, C. M., Ben-Zeev, O., Lee, T. D., Haaga, K., Shively, J., Goers, J., et al. (1986). Homology of lipoprotein lipase to pancreatic lipase. Proceedings of the National Academy of Sciences of the United States of America, 83(12), 4185–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  214. 214

    Kobayashi, J., & Mabuchi, H. (2015). Lipoprotein lipase and atherosclerosis. Annals of Clinical Biochemistry, 52(Pt 6), 632–7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  215. 215.

    Packard, C. J., Boren, J., & Taskinen, M.-R. (2020). Causes and consequences of hypertriglyceridemia. Frontiers in Endocrinology, 11, 252.

    PubMed  PubMed Central  Article  Google Scholar 

  216. 216.

    Geldenhuys, W. J., Lin, L., Darvesh, A. S., & Sadana, P. (2017). Emerging strategies of targeting lipoprotein lipase for metabolic and cardiovascular diseases. Drug Discovery Today., 22(2), 352–65.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  217. 217.

    Zilversmit, D. B. (1995). Atherogenic nature of triglycerides, postprandial lipidemia, and triglyceride-rich remnant lipoproteins. Clinical Chemistry, 41(1), 153–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  218. 218.

    Lindqvist, P., Ostlund-Lindqvist, A. M., Witztum, J. L., Steinberg, D., & Little, J. A. (1983). The role of lipoprotein lipase in the metabolism of triglyceride-rich lipoproteins by macrophages. Journal of Biological Chemistry, 258(15), 9086–92.

    CAS  Article  Google Scholar 

  219. 219.

    Chang, C. L. (2019). Lipoprotein lipase: New roles for an ‘old’ enzyme. Current Opinion in Clinical Nutrition & Metabolic Care, 22(2), 111–5.

    CAS  Article  Google Scholar 

  220. 220.

    Li, Y., He, P.-P., Zhang, D.-W., Zheng, X.-L., Cayabyab, F. S., Yin, W.-D., et al. (2014). Lipoprotein lipase: From gene to atherosclerosis. Atherosclerosis, 237(2), 597–608.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  221. 221.

    He, P.-P., Jiang, T., OuYang, X.-P., Liang, Y.-Q., Zou, J.-Q., Wang, Y., et al. (2018). Lipoprotein lipase: Biosynthesis, regulatory factors, and its role in atherosclerosis and other diseases. Clinica Chimica Acta., 480, 126–37.

    CAS  Article  Google Scholar 

  222. 222

    Reichert, J. M. (2015). Antibodies to watch in 2016. mAbs, 8(2), 197–204.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  223. 223.

    Zhang, L., Cong, Y., Li H, Chen, L., Li, B., Huang, J. X., Dong, J. (2021) Construction of a full-length antibody phage display vector. Journal of Immunological Methods, 494, 113052.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Malaysian Ministry of Higher Education through the Fundamental Research Grant Scheme [FRGS/1/2018/STG05/USM/02/2]. JYL would like to acknowledge support from Graduate Assistant Scheme from Universiti Sains Malaysia.

Author information

Affiliations

Authors

Contributions

Soo Ghee Yeoh and Jia Siang Sum performed the literature search, wrote the review, and prepared the figures. Jing Yi Lai wrote the review and critically discussed the completed manuscript. Wan Yus Haniff Wan Isa and Theam Soon Lim designed and wrote the review, supervised the process, and critically reviewed the complete manuscript. All authors read and approved the final manuscript. Jia Siang Sum and Soo Ghee Yeoh contributed equally to this work and should be regarded as joint first authors.

Corresponding author

Correspondence to Theam Soon Lim.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Soo Ghee Yeoh and Jia Siang Sum are authors contributed equally

Associate Editor Yihua Bei oversaw the review of this article

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yeoh, S.G., Sum, J.S., Lai, J.Y. et al. Potential of Phage Display Antibody Technology for Cardiovascular Disease Immunotherapy. J. of Cardiovasc. Trans. Res. (2021). https://doi.org/10.1007/s12265-021-10169-x

Download citation

Keywords

  • Antibody phage display
  • Cardiovascular disease
  • Immunotherapy
  • Monoclonal antibodies
  • Proprotein convertase subtilisin/kexin type 9
  • Angiopoietin-like proteins
  • Apolipoprotein C-III
  • Activin A receptor type II–like kinase 1
  • Perilipin
  • Lipoprotein lipase